Документ подписан простой электронной подписью Информация о владельце:

5ede28fe5b714e6809179ГАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ К.Е. ВОРОШИЛОВА»

РАБОЧАЯ ПРОГРАММА учебной дисциплины

ОПД.18 Основы систем автоматизированного проектирования (наименование учебной дисциплины)

23.02.01 Организация перевозок и управление на транспорте (по видам) (код, наименование профессии/специальности)

Рассмотрена и согласована на заседании цикловой комиссии «Сельское хозяйство, строительство и природообустройство»

(наименование комиссии)

Протокол № 2 от « 02 » сентября 2025 г.

Разработана на основе Федерального государственного образовательного стандарта среднего профессионального образования по специальности 23.02.01 Организация перевозок и управление на транспорте (по видам) утвержден согласно приказа Министерства просвещения Российской Федерации от 22.04.2014 № 376 (редакция от 01.09.2022г) и зарегистрированного в Минюсте России от 29.05.2014 №32499

(наименование профессии/ специальности, название примерной программы)

Составитель: Политехнический колледж ЛГАУ

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОПД.18 Основы систем автоматизированного проектирования

1.1. Область применения программы учебной дисциплины

Рабочая программа учебной дисциплины **ОПД.18 Основы систем автоматизированного проектирования** является частью освоения программ специалистов среднего звена в соответствии с ФГОС СПО РФ по специальности 23.02.01 Организация перевозок и управление на транспорте (по видам)

1.2. Место дисциплины в структуре программы подготовки специалистов среднего звена.

Программа учебной дисциплины ОПД.18 Основы систем автоматизированного проектирования входит в цикл общепрофессиональных дисциплин.

Рабочая программа учебной дисциплины может быть использована по специальностям СПО на базе среднего (полного) образования, в дополнительном профессиональном образовании в рамках реализации программ переподготовки кадров в учреждениях СПО.

1.3. Цели и задачи учебной дисциплины, требования к результатам освоения учебной дисциплины

В результате освоения учебной дисциплины (междисциплинарного курса) обучающийся должен

знать:

- классификацию и основные принципы построения систем автоматического проектирования;
- виды обеспечений системы автоматического проектирования;
- информационные технологии планирования, управления и контроля производственных операций при проектировании операций металлообработки;
- принципы построения объёмных моделей.

уметь:

- использовать пакеты прикладных программ для разработки объёмных моделей и чертежей деталей и определения режимов резания;
- составлять управляющие программы с использованием систем автоматического проектирования;
- работать с информационной системой по выбору технологического процесса металлообработки из базы данных;
- работать с литературой, самостоятельно расширять знания в области систем автоматического проектирования.

1.4. Количество часов на освоение программы учебной дисциплины:

всего –155 часов, в том числе:

максимальной учебной нагрузки обучающихся — 103 часа, включая, обязательной аудиторной учебной нагрузки обучающихся — 39 часов;

самостоятельной работы обучающихся — 52 часа, дифференцированный зачет — 2 часа.

2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Результатом освоения рабочей программы учебной дисциплины является овладения обучающимся видом деятельности, в том числе профессиональными (ПК) и общими (ОК) компетенциями в соответствии с ФГОС СПО РФ по специальности по специальности 23.02.01 Организация перевозок и управление на транспорте (по видам)

видам ј		
Код ПК, ОК	Умения	Знания
ОК 01 – ОК 09 ПК 1.1 – ПК 1.3, ПК 2.1 – ПК 2.3, ПК 3.1 – ПК 3.3, ПК 4.1 – ПК 4.3	использовать пакеты прикладных программ для разработки объёмных моделей и чертежей деталей и определения режимов резания; составлять управляющие программы с использованием систем автоматического проектирования; работать с информационной системой по выбору технологического процесса металлообработки из базы данных; работать с литературой, самостоятельно расширять знания в области систем автоматического проектирования.	классификацию и основные принципы построения систем автоматического проектирования; виды обеспечений системы автоматического проектирования; информационные технологии планирования, управления и контроля производственных операций при проектировании операций металлообработки; принципы построения объёмных моделей.

3. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ 3.1. Тематический план учебной дисциплины **ОПД.01 Инженерная графика**

Вид учебной работы	Количество часов
1	2
Максимальная учебная нагрузка (всего)	155
Обязательная аудиторная учебная нагрузка (всего)	
в т. ч.:	
теоретическое обучение	39
практические занятия	62
Самостоятельная работа обучающегося	52
Промежуточная аттестация:	2
дифференцированный зачет, (экзамен)	
ИТОГО	155

3.2. Содержание обучения по учебной дисциплине ОПД.18 Основы систем автоматизированного проектирования

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся		Осваиваемые элементы компетенций	
Тема 1	Содержание учебного материала	41		
CAD-системы	Классификация САПР, задачи и виды. Компас 3D. Назначение. Типы документов. Обзор интерфейса. Методы построения геометрических примитивов в системе Компас-график. Элементы оформления графических документов. Использование библиотек компонентов в системе Компас-график.	18	OK 01 – OK 09	
	Практическое занятие. Инструктаж по ТБ Создание чертежа в системе Компас-график. Построение твердого тела в системе Компас-3D. Построение твердого тела в Компас-3D с использованием приложения Shaft-3D. Построение зеркального тела. Оформление параметрического чертежа по трехмерной модели. Построение твердых тел в системе Компас-3D на основании эскизов. Дополнительные элементы построения. Фаски, скругления, отверстия, массивы.	20	ПК 1.1 – ПК 1.3, ПК 2.1 – ПК 2.3, ПК 3.1 – ПК 3.3, ПК 4.1 – ПК 4.3	
	Самостоятельная работа обучающихся Работа с системой «Компас 3D». Построение твердого тела в Компас-3D с использованием приложения Shaft-3D. Построение твердого тела, управляемого внешними переменными. Построение зависимого и независимого исполнения детали.	18		
	Содержание учебного материала	30		
	Назначение и обзор интерфейса САПР ТП. Организация работы в САПР ТП. Создание, добавление, перемещение и редактирование операций технологического процесса. Формирование выходной технологической документации.	8	ОК 01 – ОК 09 ПК 1.1 –	
Тема 2 САПР ТП	Практическое занятие. Инструктаж по ТБ Разработка технологической операции в САПР ТП. Создание, добавление, перемещение и редактирование операций технологического процесса.	20	20	
	Самостоятельная работа обучающихся. Работа с тренажёрами. Создание исходных данных для составления технологического процесса в САПР ТП.	16		
	Содержание учебного материала	26	OK 01 – OK 09	
Тема 3 САМ-системы	САМ-система. Назначение, обзор интерфейса. Настройка интерфейса, настройка единиц измерений, стилей линий по умолчанию. Построение и редактирование геометрических примитивов. Циклы черновой и чистовой обработки. Циклы сверления, параметры.	13	ПК 1.1 – ПК 1.3, ПК 2.1	

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем в часах	Осваиваемые элементы компетенций
	Черновая и чистовая обработка токарной детали, прорезание канавок и нарезание резьбы.		– ПК 2.3, ПК 3.1 –
	Практическое занятие. Инструктаж по ТБ Построение контура токарной детали. Обработка токарной детали с применением циклов. Обработка токарной детали с применением различных методов обработки. Импорт твердотельной модели. Обработка твердотельной детали с двух установок. Токарно-фрезерная обработка детали. Построение контура фрезерной детали. Обработка фрезерной детали с применением 2D-технологий. Копирование и зеркальное отражение фрезерных операций. Создание пользовательской библиотеки материалов, инструментов и режимов резания. Анализ и импортированных твердотельных моделей. Операции трансформации. Построение твердотельной фрезерной детали.		ПК 3.3, ПК 4.1 – ПК 4.3
	Самостоятельная работа обучающихся Работа с дополнительными источниками информации. Подготовка к текущему контролю. Построение и редактирование геометрических примитивов. Реферат на тему САМ-системы	18	
	Промежуточная аттестация (дифференцированный зачет)		OK 01 – OK 09 ПК 1.1 – ПК 1.3, ПК 2.1 – ПК 2.3, ПК 3.1 – ПК 3.3, ПК 4.1 – ПК 4.3
	Всего: из них практических занятий	155 62	
	лекций самостоятельная работа	39 52	
зачет		2	

4. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

4.1. Требования к материально-техническому обеспечению

Реализация программы учебной дисциплины предполагает наличие учебного кабинета – Инженерная графика

Подготовка внеаудиторной работы должна обеспечиваться доступом каждого обучающегося к базам данных и библиотечным фондам. Во время самостоятельной подготовки обучающиеся должны быть обеспечены доступом к сети Интернет.

Оборудование учебного кабинета и рабочих мест кабинета

Посадочные места по количеству студентов, рабочее место преподавателя, наглядные пособия (учебники, карточки, словари, дополнительная литература, раздаточный материал).

Технические средства обучения

Компьютер, мультимедийный проектор.

Проводится перечень средств обучения, включая тренажеры, модели, макеты, оборудование, технические средства, в т.ч. аудиовизуальные, компьютерные и телекоммуникационные и т. п. (количество не указывается).

4.2. Общие требования к организации образовательной деятельности

Освоение обучающимися учебной дисциплины может проходить в условиях созданной образовательной среды как в образовательной организации (учреждении), так и в организациях, соответствующих профилю учебной дисциплины.

Преподавание учебной дисциплины должно носить практическую направленность. В процессе практических занятий обучающиеся закрепляют и углубляют теоретические знания, приобретают необходимые профессиональные умения и навыки.

Изучение таких дисциплин как <u>информатика, математика</u> по специальности должно предшествовать освоению профессиональных модулей или изучаться параллельно.

Теоретические занятия должны проводиться в учебном кабинете — кабинете <u>инженерной графики</u>

Практические занятия проводятся в кабинете инженерной графики согласно ФГОС СПО РФ и ППССЗ СПО по специальности.

Текущий и промежуточный контроль обучения складывается из следующих компонентов:

текущий контроль: опрос обучающихся на занятиях, проведение тестирования, решение задач обучающимися в процессе проведения теоретических занятий и т.д.;

промежуточный контроль: дифференцированный зачет (в соответствии с учебным планом образовательной организации (учреждения)).

4.3. Кадровое обеспечение образовательной деятельности

Требования к квалификации педагогических кадров, осуществляющих реализацию ППССЗ по специальности, должна обеспечиваться педагогическими

кадрами, имеющими среднее профессиональное, высшее образование, соответствующее профилю преподаваемой учебной дисциплины. Опыт деятельности в организациях соответствующей профессиональной сферы является обязательным для преподавателей, отвечающих за освоение обучающимися профессионального учебного цикла.

Преподаватели получают дополнительное профессиональное образование по программам повышения квалификации, в том числе в форме стажировки в профильных организациях не реже одного раза в 5 лет.

4.4. Информационное обеспечение обучения.

Перечень рекомендуемых учебных изданий, интернет-ресурсов, дополнительной литературы

Основные источники

- 1. Основы автоматизированного проектирования : учебник / под ред. А. П. Карпенко.— Москва : ИНФРА-М, 2021.—329 с., [16] с. : цв. ил.— (Среднее профессиональное образование).-ISBN 978-5-16-014441-2.-Текст : электронный.-URL: https://znanium.com/catalog/product/1189338.—Режим доступа: по подписке.
- 2. Компьютерная графика в САПР : учебное пособие для спо / А. В. Приемышев, В.Н. Крутов, В. А. Треяль, О. А. Коршакова.— 3-е изд., стер.— Санкт-Петербург : Лань, 2023.—196 с.—ISBN 978-5-507-47669-5.— Текст: электронный// Лань : электронно-библиотечная система.— URL: https://e.lanbook.com/book/403376.— Режим доступа: для авториз. пользователей.

Дополнительные источники

- 1. Берлинер, Э. М. САПР конструктора машиностроителя: учебник / Э.М. Берлинер, О.В. Таратынов.—Москва: ФОРУМ: ИНФРА-М, 2024.—288 с.—(Среднее профессиональное образование).-ISBN 978-5-00091-558-5.- Текст: электронный.-URL: https://znanium.ru/catalog/product/2119097.— Режим доступа: по подписке.
- 2. Колошкина, И. Е. Основы программирования для станков с ЧПУ в САМсистеме: учебник / И. Е. Колошкина.-Москва; Вологда: Инфра-Инженерия, 2022.-260 с.-ISBN 978-5-9729-0949-0.- Текст электронный.URL: https://znanium.com/catalog/product/1902772.—Режим доступа: по подписке.
- 3. САПР и графика: информационно-практический журнал.—Москва.: Компьютер Пресс", 2020-2023
- 4. Турчин, Д. Е. Программирование обработки на станках с ЧПУ: учебное пособие / Д. Е. Турчин.- Москва; Вологда: Инфра-Инженерия, 2022.-312

с. -ISBN978-5-9729-0867-7. - Текст электронный. — URL : https://znanium.com/catalog/product/1903143. — Режим доступа: по подписке.

Интернет-ресурсы

- 1. http://window.edu.ru/-бесплатная электронная библиотека онлайн «Единое окно к образовательным ресурсам».
- 2. http://fcior.edu.ru-федеральный центр информационно-образовательных ресурсов.
 - 3. http://edu.ru-федеральный портал «Российское образование».

5. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и освоения учебной дисциплины осуществляется преподавателем при проведении практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обучения (освоенные	Формы и методы контроля и оценки		
умения, усвоенные знания)	результатов обучения.		
1	2		
Умения			
использовать пакеты прикладных программ для разработки объёмных моделей и чертежей деталей и определения режимов резания; составлять управляющие программы с использованием систем автоматического проектирования; работать с информационной системой по выбору технологического процесса металлообработки из базы данных; работать с литературой, самостоятельно расширять знания в области систем автоматического проектирования.	Оценка результатов выполнения заданий, приемов, упражнений. Оценка выполненных самостоятельных работ.		
Знания			
- классификацию и основные принципы построения систем автоматического проектирования; - виды обеспечений системы автоматического проектирования; - информационные технологии планирования, управления и контроля производственных операций при проектировании операций металлообработки; - принципы построения объёмных моделей.	Контрольная работа. Самостоятельная работа. Защита реферата. Выполнение проекта. Наблюдение за выполнением практического задания (деятельностью студента). Оценка выполнения практического задания (работы). Подготовка и выступление с		

В графе «**Результаты обучения**» перечисляются все знания и умения, указанные в паспорте программы. Компетенции должны быть соотнесены со знаниями и умениями. Для этого необходимо проанализировать, освоение каких компетенций базируется на знаниях и умениях этой дисциплины.

Для контроля и оценки результатов обучения преподаватель выбирает формы и методы с учетом формируемых компетенций и специфики обучения по программе дисциплины.

Приложение 1

ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ К.Е. ВОРОШИЛОВА»

КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА по учебной дисциплине

ОПД.018 Основы систем автоматизированного проектирования (наименование учебной дисциплины)

23.02.01 Организация перевозок и управление на транспорте (по видам) (код, наименование профессии/специальности)

Контрольно-оценочные средства для проведения промежуточной аттестации в форме дифференцированного зачета

6.1.1. Примерные задания для тестирования

Задание 1.

САПР относится к:

- автоматической системе управления БД;
- автоматизированной системе управления технологическими процессами;
- автоматизированной системе проектирования;
- автоматизированной системе управления предприятием. Задание 2.

Автоматизированная система отличается от автоматической:

- сложностью;
- стоимостью;
- наличием человека в структуре системы;
- отсутствием человека в структуре системы. Залание 3.

Проектирование рассматривается как процесс преобразования входных данных в выходные:

- с точки зрения теории принятия решений;
- с информационной точки зрения;
- с точки зрения реализации цикла управления;
- с точки зрения процесса, содержащего операции синтеза и анализа. Задание 4.

Проектирование рассматривается как процесс направленный на получение описания системы, удовлетворяющего техническому заданию:

- с точки зрения теории принятия решений;
- с информационной точки зрения;
- с точки зрения реализации цикла управления;
- с точки зрения процесса, содержащего операции синтеза и анализа. Задание 5.

Процесс описания проектирования, содержащий операции анализа, синтеза, оценку и выработку управляющего воздействия, рассматривается:

- с точки зрения теории принятия решений;
- с информационной точки зрения;
- с точки зрения реализации цикла управления;
- с точки зрения процесса, содержащего операции синтезе и анализа. Задание 6.

Аспекты проектирования реализуются в такой последовательности:

- конструкторский аспект^технологический аспект^-функциональный;
- функциональный^- технологический^ конструкторский;
- технологический конструкторский функциональный;
- функциональный^- конструкторский^- технологический.

Задание 7.

К составным частям процесса проектирования относятся: а)

техническое проектирование;

- б) стадии проектирования;
- в) разработка технического задания; г)

этапы проектирования;

д) проектные процедуры; е)

проектные операции;

- ж) испытание и внедрение. Ответы:
 - в, г, д, ж;
 - б, г, д, е;
 - а, в, д, ж;
 - б, в, г,

Д.

Задание 8.

Предпроектные исследования относятся к:

- стадии проектирования;
- этапу проектирования;
- проектным процедурам;
- операци

ям.

Задание 9.

Разработка ТЗ относится к:

- стадии проектирования;
- этапу проектирования;
- проектным процедурам;
- операци

ям.

Задание 10.

Техническое и рабочее проектирование относится к:

- стадии проектирования;
- этапам проектирования;
- проектным процедурам;
- проектным операциям.

Задание 11.

Процесс проектирования на стадии НИР (научно-исследовательская работа) заканчивается:

- изготовлением опытного образца;
- разработкой технического задания;
- проверкой корректности и реализуемости основных принципов, определяющих функционирование объекта;
- выдача материалов по изучению спроса на новые изделия. Задание 12.

Процесс проектирования на стадии ОКР (опытно-конструкторская работа)

заканчивается:

- разработкой опытного образца или рабочей партии изделий;
- разработкой принципиальных схем технологического процесса маршрутной технологии;
 - получением управляющей информации на машинных носителях для ЧПУ;
- эскизным проектирование и проверкой корректности принципов определяющих функционирование объекта.

Задание 13.

Необходимая документация для изготовления изделия формируется:

- на стадии ОКР;
- на стадии технического проектирования;
- на стадии рабочего проектирования, испытаний и внедрения;
- на этапе проектирования операционной технологии.

Задание 14.

Разработка принципиальной схемы технологического процесса маршрутной технологии относится:

- к проектным процедурам;
- к этапу проектирования;
- к разработке технического задания;
- к операционной технологии.

Задание 15.

Оформление чертежей или расчет параметров какого-либо блока относятся к:

- проектным процедурам;
- этапу проектирования;
- операционной технологии;
- проектным операциям.

Задание 16.

Расчет показателей эффективности варианта проекта относится к:

- проектным операциям;
- проектным процедурам;
- этапам проектирования;
- стадии проектирования.

Задание 17.

Система автоматизированного проектирования должна быть: а) закрытой, исключающей влияние внешней среды;

б) человеко-машинной системой; в)

иерархической системой;

- г) открытой и развивающейся системой;
- д)полностью специализированной, исключающей применение унифицированных элементов.

Ответы:

- a, б, в;
- б, в, г;
- в, г, д;

• а, в, д.

Задание 18. Преимущества автоматизированного проектирования перед традиционным: а) автоматизированное проектирование предлагает оптимальный и единственный вариант проекта;

- б) автоматизированное проектирование многовариантное;
- в) автоматизированное больших финансовых и временных затрат на предпроектные изыскания;
- г) САПР наиболее полно использует технические возможности ЭВМ; д) САПР не требует непосредственного участия человека в процессе проектирования;
- е) с помощью САПР выполняется разработка чертежей, производится трехмерное моделирование изделия.

Ответы:

- б, г, e;
- а, г, д;
- в, г, д;
- г, д, е.

Задание 19.

В процессе разработке САПР возникают трудности:

- а) невозможность своевременного вмешательства человека в процесс проектирования;
- б) невозможность представления всей информации используемой в САПР в формальном виде;
- в) проблема реализации многовариантного проектирования; г) проблема организации пользовательского интерфейса;
- д) проблема выбора и формирования критерия оптимизации целевой функции в многокритериальном процессе проектирования;
- е) ограниченные возможности ЭВМ;
- ж) сложность формализации интеллектуальной деятельности человека. Ответы:
 - б, д, е, ж;
 - а, в, д, ж;
 - a, б, в, г;
 - б, в, г,

Д.

Задание 20.

Применение принципа системного единства, как главного принципа системного подхода к автоматизированному проектированию подразумевает: а) создание единственного, но оптимального проекта;

- б) обеспечение целостности системы в процессе ее создания
- функционирования развития;
- в) подчинение частных целей подсистем общей цели системы;
- г) преимущественное создание и использование единых типовых унифицированных элементов САПР;
- д) согласование критериев оптимальности системы в целом и ее отдельных

частей.

Ответы:а, б, д;

- б, в, д;
- в, г, д;
- а, г, д.

Задание 21.

Принцип совместимости при разработке САПР подразумевает:

- а) возможность экстренной замены вышедшей из строя какого-либо унифицированного технического блока;
- б) согласование критериев системы в целом и ее отдельных частей; в) обеспечение конструктивной совместимости;
- г) обеспечение целостности системы в процессе ее создания; д) обеспечение языковой совместимости;
- е) совместимость технических характеристик отдельных подсистем;
- ж) возможность пополнения, совершенствования и обновления составного частей САПР.

Ответы:

- a, в, ж;
- б, в, г;
- в, д, е;
- г, е, ж.Задание22.

Применение принципа развития при проектировании САПР подразумевает: а) пополнение и обновление информационного обеспечения;

- б) постепенного снижения активности человека в процессе проектирования; в) четкое разделение функций человека и машины;
- г) совершенствование и обновление составных частей САПР; д) расширение взаимосвязи между подсистемами;
- е) расширение возможности унификации отдельных частей САПР.

Ответы:

- а, г, д;
- г, д, е;
- б, в, г;
- a, B, e.

Задание 23.

Предпроектные исследования при разработке САПР включает в себя: а) разработку эскизного проекта объекта;

- б) прогнозирование спроса на проектируемый объект;
- в) прогнозирование развития конкретных отраслей и смежных отраслей; г) проведение технико-экономических расчетов по разработке нового изделия;
- д) разработка концептуальной модели объекта. Ответы:
 - a, б, в;

- б, в, д;
- в, г, д;а, г, д.

Задание 24.

При разработке САПР для проведения прогнозов не используются:

- методы экстраполяции;
- методы долгосрочного планирования;
- методы экспертизы;
- методы моделирования.

Задание 25.

Методы экстраполяции нецелесообразно использовать в случаях: а) экстраполяции данных о параметрах объекта прогнозирования;

- б) экстраполяции оценочных функциональных характеристик систем; в) экстраполяции системных и структурных характеристик;
- г) экстраполяции характеристик объекта при изменении условий, определяющих поведение системы;
- д) применения экстраполяции в сочетании с другими методами прогнозирования.

Задание 26.

К специалистам при подборе экспертов предъявляются требования: а) эксперты должны быть специалистами широкого профиля;

- б) узкая специализация эксперта для данной отрасли; в) всестороннее образование;
- г) умение предвидеть, фантазировать;
- д) различать пределы разумного и возможного;
- е) для объективной оценки эксперт не должен работать в данной отрасли. Ответ:
 - а, в, г, д;
 - б, в, г, д;
 - a, в, г, e;
 - а, г, д,

e.

Задание 27.

Эксперт в карточке сделал такую запись 1 2 3 4^x. Цифра 2 означает:

- 2 года необходимо, чтобы данная подсистема перешла в стадию прикладных исследований;
 - 2 года требуется для перехода из предыдущей стадии ОКР;
- 2 года необходимо для перехода в стадию возможности использования. Задание 28.

Эксперт в карточке сделал такую запись 1 2 3 4^x. Цифра 3 означает:

- данная подсистема находится в стадии разработки;
- 3 года нужно для того чтобы система перешла в стадию прикладных исследований;
- 3 года необходимо для перехода в стадию функционирования. Задание 29.

Эксперт в карточке сделал такую запись 1 2 3 4^x. Цифра 4 означает:

- 4 года нужно для того, чтобы система перешла в стадию прикладных исследований; 4 года нужно для перехода в стадию ОКР;
- 4 года необходимо для перехода в стадию функционирования. Задание 30.

Уровни «дерева целей» располагаются в следующем порядке:

- уровень мероприятий;
- уровень задач;
- уровень проблем;
- уровень подсистем;
- уровень систем;
- уровень национальных целей.

Задание 31.

САПР в «дереве целей» относится к уровню:

- уровень систем;
- уровень задач;
- уровень подсистем;
- уровень проблем.

Задание 32.

Обеспечивающая часть САПР относится в «дереве целей»:

- к уровню системы;
- к уровню задач;
- к уровню подсистем;
- к уровню проблем.

Задание 33.

Функциональная часть САПР относится к:

- к уровню систем;
- к уровню задач;
- к уровню подсистем;
- к уровню проблем.

Вопросы для подготовки к зачету

- 1. Определение процесса проектирования с разных точек зрения. Различие между традиционным и автоматизированным проектированием.
- 2. Аспекты проектирования. Составные части процесса проектирования.
- 3. Проектирование как объект автоматизации. Основные принципы создания САПР.
- 4. Модель процесса проектирования.
- 5. Анализ задач, подлежащие решению при создании САПР.
- 6. Ведущая роль предпроектных исследований и прогнозирования в автоматизированном проектировании.
- 7. Проектирование как объект автоматизации.

- 8. Определение САПР. Классификация САПР.
- 9. Состав и структура САПР.
- 10. Примеры подсистем проектирующей части. Их назначение.
- 11. Подсистемы обеспечивающей части. Их назначение.
- 12. Пользовательский интерфейс систем КОМПАС-5D и AutoCaD.
- 13. Что такое твердотельное моделирование, и какие возможности открывает оно при автоматизации проектирования.
- 14. Перечислите способы создания твердых тел в системе AutoCaD.
- 15. Какие базовые тела предлагает система для твердотельного моделирования. Приведите соответствующие команды.
- 16. Опиши диалоги, который предлагает система при выполнении команд BOX (ЯЩИК), VEDGE (КЛИН), CYLINDER (ЦИЛИНДР), CONE (КОНУС), TORUS (ТОР), SPHERE (ШАР), PYRAMID (ПИРАМИДА).
- 17. Какие опции предлагает команда PYRAMID.
- 18. Как построить усеченную пирамиду.
- 19. Назовите назначение команды POLYSOLID (ПОЛИТЕЛО).
- 20. Постройте линию, представляющую собой чередования линейных и дуговых сегментов в виде контура.
- 21. Какие настройки необходимо выполнить перед обращением к команде POLYSOLID? Какие системные переменные используются для этой цели?
- 22. Какие опции предлагает команда POLYSOLID?
- 23. Какие способы предлагает AutoCAD для формирования тел из простых двумерных объектов?
- 24. Перечислите пространственные динамические операции.
- 25. Что представляет собой примитив REGION (ОБЛАСТЬ)? Каковы его свойства?
- 26. Какие операции можно производить над ОБЛАСТЬЮ с целью получения твердых тел?
- 27. Как создать область?
- 28. Продемонстрируйте на конкретном примере получение твердого тела на базе области, используя команду EXTRUDE (ВЫДАВИТЬ). Оп<u>иши</u>те диалог при выполнении этой команды.
- 29. Как работает команда SWEER (СДВИГ) и как осуществляется при этом масштабирование, поворот и закручивание? Выполните пример построение твердого тела этим способом.
- 30. Постройте замкнутый плоский контур, предложенный преподавателем; образуйте из него область и используя команду REVOLVE (ВРАЩАТЬ), создайте твердое тело (угол вращения 270^{0}).
- 31. Опишите принцип работы команды LOFT (ПОСЕЧЕНИЯМ). Каким образом формируется внешние поверхности твердого тела, построенного этой командой?
- 32. Дайте характеристику всем опциям команды LOFT.
- 33. Какие способы аппроксимации предлагаются при выполнении этой

команды?

- 34. Какая команда служит для создания твердого тела, если двумерный объект не является по лилинией?
- 35. Что такое составное тело? Какие команды используются для построения составных тел?
- 36. Какая команда используется для вырезания в твердом теле различных отверстий, сложных полостей?

Что происходит с пересекающимися твердыми телами, если применяются к ним команда UNION?

- 37. Выполните построения составных тел, предложенных преподавателем, с использованием команд ВЫДАВЛИВАНИЕ, ОБЪЕДИНЕНИЕ, ПЕРЕСЕЧЕНИЕ, ВЫЧИТАНИЕ,
- 38. Постройте различные сечения, открывающие внутреннюю структуру твердого тела, применив команду ВЫЧИТАНИЕ.
- 39. Перечислите группы команд, используемые для редактирования твердотельных объектов.
- 40. Какие изменения можно произвести в твердом теле с помо<u>щь</u>ю булевых операций?
- 41. Предлагаются два рисунка: до редактирования и после. Оп<u>иши</u>те, какие команды использовались для редактирования, их последовательность, опции.
- 42. Какие режимы имеет команда SOLIDEDIT (РЕДТЕЛ)?
- 43. Перечислите операции, которые выполняются опциями FACE (ГРАНЬ), EDGE (РЕБРО), DODY (ТЕЛО ACIS).
- 44. Опишите диалог, которые предлагает система при выполнении опции Смесить, Материал.
- 45. Покажите на конкретном примере использование команды EXTRUDE (ВЫДАВИТЬ) для создания сложных полостей внутри твердого тела.
- 46. Как осуществляется перенос грани на заданную величину? Как при этом изменяется геометрия твердого тела?
- 47. На что влияет знак перед величиной переноса?
- 48. Что ограничивает выполнение команды УДАЛЕНИЕ ГРАНЕЙ
- 49. Постройте составную деталь, состоящую из 2^x частей. Осуществите поворот на 90^0 одной части относительно другой.
- 50. Как изменить наклон грани?
- 52. Задайте команду SOLIDEDIT (РЕДТЕЛ) и выберите опцию P, т.е. редактирование ребра. Какие варианты предлагает система? Отработайте их на конкретном примере.
- 53. Какие операции можно выполнить, если выбрать опцию Тела ACIS?
- 54. Как создать твердое тело, состоящее из точных оболочек?
- 55. Постройте твердое тело в виде треугольной призмы и на всех гранях выполните клеймение в виде плоских рисунков.
- 56. Примените к новым ребрам, образовавшимся в результате клеймения

- операции, редактирования.
- 57. Какие операции служат для удаления ненужных элементов в теле и как осуществить отделение независимых частей.
- 58. Выполните построение твердого тела с внутренними полостями по заданию преподавателя. Применить к нему команду SLIGE (PA3PE3) различными плоскостями.
- 59. Какие варианты предлагает система для выбора секций плоскости при выполнении команды SURFACE (ПОВЕРХНОСТЬ)?
- 60. Какая команда используется для построения динамических сечений из твердотельных объектов?
- 61. Перечислите опци этой команды и их назначение. Примените их к конкретным примерам.
- 62. Вызовите контекстное меню редактирования сечения и дайте характеристику всех пунктов этого меню.
- 63. Как задать параметры псевдоразряда? Какое диалоговое окно для этого используется?
- 64. Что такое мировая система координат (МСК), и пользовательские системы координат ПСК. Опишите ориентацию МСК.
- 65. Какая команда и диалоговое окно служат для работы с системами координат.
- 66. Что такое пиктограмма, какие стили имеет она.
- 67. В каком диалоговом окне производится настройка формы и размеры пиктограммы, ее расположение на экране.
- 68. Что представляет собой такие свойства объектов как уровень и высота. Объясните их графически.
- 69. Введение команду ELEV (Уровень). Проследите за диалогом, который предлагает система.
- 70. Какизменить уровень и высоту при построении объекта.
- 71. Какиеварианты ортогональных систем координат предлагает система.
- 72. Введите или выберите команду ПСК. Дайте характеристику опциям этой команды.
- 73. Какие панели инструментов служит для работы с ПСК.
- 74. Каквызвать диалоговое окно.
- 75. Какие вкладки имеет это окно, и какие режимы ПСК можно установить через него.
- 76. Выполните построения в различных ПСК по заданию преподавателя.
- 77. Перечислите основные средства, которые предлагает система для экранного отображения трехмерных объектов в пространстве.
- 78. Какие возможности предоставляет команда VPOINT (ТЗРЕНИЯ) и какой при этом ведется диалог.
- 79. Какиеварианты предлагаются для указания точки зрения.
- 80. Как работает опция Повернуть при задании точки зрения. Продемонстрировать эту опцию на примере.
- 81. Какая опция предлагается по умолчанию. Войдите в этот режим,

- т.е. выберите эту опцию.
- 82. Что такое «компас» в средствах отображения 3-х мерных объектов. Объясните его графические элементы.
- 83. Что означает перемещение перекрестия: а) внутри малого круга; б) между двумя окружностями; в) по большей окружности. Как «ведут себя» при этом оси координат.
- 84. Вызовите команду DDVPOINT (ДИАЛТЗРЕН). Объясните назначение разделов появившегося при этом диалогового окна.
- 85. Для каких целей применяется команда PLAN(ПЛАН).
- 86. Что такое перспективное изображение трехмерного объекта. Какая команда используется для этой цели.
- 87. Что такое «камера» и «точка цели».
- 88. Перечислите опции команды DVIEW (ДВИД).
- Какие опции служат для задания главного луча для построения перспективы.
- 90. Как устанавливается расстояние от точки цели до камеры.
- 91. Что такое панорамирование перспективы и как оно осуществляется.
- 92. Как произвести уменьшение и увеличение перспективы изображения, а также изменить фокусное расстояние.
- 93. Какая опция осуществляет поворот перспективы вокруг главного луча и наклон ее.
- 94. Объясните, как работает опция Сечение и продемонстрируйте это на конкретном примере.
- 95. Постройте архитектурный ансамбль по заданию преподавателя и отработайте на нем все опции команды ДВИД.
- 96. Для какой цели и как осуществляется удаление невидимых линий.
- 97. Какие существуют визуальные стадии. Дайте им характеристику и назначение.
- 98. На предварительно построенном трехмерном объекте продемонстрируйте показ 3D-каркаса, реалистический вид по Гуро и по Гучу.
- 99. Как осуществить тонирование объекта.
- 100. Объясните работу с источником света.
- 101. Как придать объекту то или иное свойство материала.
- 102. Какие разделы имеются в диалоговом окне Диспетчер видов.
- 103. Как можно просмотреть свойства выбранного вида моделей отображения.
- 104. Какие свойства располагаются на вкладке General (Общие). Перечислите их.
- 105. Как изменить настройки вида.
- 106. Что такое подрезка вида и как ее осуществить.
- 107. Как создать новый вид.
- 108. Что такое подрезка вида и как ее осуществить.
- 109. Как создать новый вид.

- 110. Дайте характеристику орбитального режима. Для какой цели он служит.
- 111. Опишите панель инструментов 3D Навигация и панель 3D Навигация пульта управления.
- 112. Какие разделы имеет меню Пульт управления и их назначения.
- 113. Продемонстрируйте работу команд 3D Орбита (Зависимая орбита),
- 3D Сорбита (Свободная орбита) и 3D Порбита (Построенная орбита).
- 114. Как выглядит курсор, когда находится внутри орбитального кольца, вне него, на левом или правом малых кругах, на верхнем или нижнем малых кругах.
- 115. Какие возможности имеет контекстное меню при выполнении орбитальных команд.
- 116. Что представляет собой видовой экран.
- 117. Что такое пространства модели и пространство листа. Какие особенности трехмерного моделирования в этих пространствах.
- 118. Какая команда служит для создания той или иной конфигурации видовых экранов в пространстве листа. Какими способами можно задать эту команду.
- 119. Вызовите диалоговое окно «№ Видовые экраны». Рассмотрите все разделы этого окна.
- 120. Как сохранить конфигурацию экранов для дальнейшего использования.
- 121. Как работают списки Применить, Режим, Сменить вид на, Визуальный стиль.
- 122. Что такое «вкладки листа» и каково их максимальное количество.
- 123. Перечислите параметры вкладки листа. Какие настройки используются по умолчанию.
- 124. Какое диалоговое окно служит для настройки параметров вкладки листа. Опишите разделы этого окна.
- 125. Как создать новый набор параметров листа.
- 126. Создайте несколько плавающих визовых экранов прямоугольной формы пространства листа. Какая команда для этого используется. Опишите опции этой команды.
- 127. Какую работу с листом можно выполнять в каждом видовом экране.
- 128. Что такое согласованные виды. Как они создаются.
- 129. Постройте согласованные виды детали, предложенной преподавателем.