Документ подписан простой электронной подписью Информация о владельце:

ФИО: Гнатюк Сергей Иванович ПОЛИТЕХНИ ЧЕСКИЙ КОЛЛЕДЖ ФЕДЕРАЛЬНОГО Должность: Первый проректор Дата подписания: 17.10.2025 ДАДСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО Уникальный программный ключ: УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ 5ede28fe5b714e689437554344657777774736CУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ К.Е. ВОРОШИЛОВА»

РАБОЧАЯ ПРОГРАММА учебной дисциплины ОПД. 02 Техническая механика (наименование учебной дисциплины)

(наименование учеоной ойсциплины)

08.02.01 Строительство и эксплуатация зданий и сооружений (код, наименование профессии/специальности)

Рассмотрено и согласовано цикловой комиссией сельское хозяйство, строительство и природообустройство.

Протокол № 2 от «02» сентября 2025 г.

Разработана на основе ФГОС СПО РФ и ПООП СПО для специальности 08.02.01 Строительство и эксплуатация зданий и сооружений (утвержденного Приказом Минпросвещения России от 10 января 2018 № 2).

Организация разработчик: Политехнический колледж ЛГАУ

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ОПД.02 Техническая механика

1.1. Область применения программы учебной дисциплины

Рабочая программа учебной дисциплины (далее — рабочая программа) является частью освоения программ подготовки специалистов среднего звена (далее ППССЗ) в соответствии с ФГОС СПО РФ и ПООП СПО для специальности 08.02.01Строительство и эксплуатация зданий и сооружений..

(указать профессию, специальность, укрупненную группу (группы) профессий или направление (направления) подготовки)

Рабочая программа учебной дисциплины ОПД.02 Техническая механика по специальности 08.02.01Строительство и эксплуатация зданий и сооружений может быть использована на базе среднего (полного общего) образования, в профессиональном обучении и дополнительном профессиональном образовании.

1.2. Цели и задачи учебной дисциплины, требования к результатам освоения учебной дисциплины

Учебная дисциплина ОПД.02 Техническая механика относится к общепрофессиональному циклу.

Целью реализации основной образовательной программы среднего общего образования по предмету ОПД.02 Техническая механика является освоение содержания предмета Техническая механика и достижение обучающимися результатов изучения в соответствии с требованиями, установленными ФГОС СПО РФ и ПООП СПО.

В результате освоения учебной дисциплины обучающийся должен знать:

- основные понятия и законы механики твердого тела;
- методы механических испытаний материалов.

В результате освоения учебной дисциплины обучающийся должен уметь:

- выполнять расчеты на прочность, жесткость и устойчивость элементов сооружений;
- определять координаты центра тяжести тел.

2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ ОПД.02 Техническая механика

Код	Умения	Знания
пк,		
ок ⁸²		
ПК 1.1 ПК 1.2 ОК 01–04	выполнять расчеты на прочность, жесткость и устойчивость элементов сооружений; определять аналитическим и графическим способами усилия, опорные реакции балок, ферм, рам; определять усилия в	- законы механики деформируемого твердого тела, виды деформаций, основные расчеты; — определение направления реакции связи; - определение момента силы относительно точки, его свойства; - типы нагрузок и виды опор балок, ферм, рам; - напряжения и деформации, возникающие в
	стержнях ферм; строить эпюры нормальных напряжений, изгибающих мо- ментов и др.	строительных элементах при работе под нагрузкой; - моменты инерции простых сечений элементов и др

3. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Тематический план учебной дисциплины ОПД.02 Техническая механика

Вид учебной работы	Количество часов
1	2
Максимальная учебная нагрузка (всего)	111
Обязательная аудиторная учебная нагрузка (всего)	78
в т. ч.:	
теоретическое обучение	29
практические занятия	47
Самостоятельная работа обучающегося	33
Промежуточная аттестация:	2
дифференцированный зачет	
ИТОГО	111

3.2. Содержание обучения по учебной дисциплине ОПД.02 Техническая механика

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем в часах	Осваиваемые элементы компетенций
Раздел 1 Теоретическая механика		35	
Тема 1.1	Содержание учебного материала	8	ПК 1.1
Основные понятия	Теоретическая механика и ее разделы: статика, кинематика, динамика. Краткий обзор развития	2	ПК 1.2
и аксиомы статики	теоретической механики. Материальная точка. Абсолютно твердое тело. Сила как вектор. Единицы силы.		OK 01–04
	Практическое занятие. Инструктаж по ТБ Система сил. Равнодействующая и уравновешивающая системы сил. Внешние и внутренние силы. Аксиомы статики. Свободное и несвободное тело.	6	
	Самостоятельная работа обучающихся Степень свободы. Связи. Реакции связей и правила определения их направления.	2	
	Содержание учебного материала	6	ПК 1.1
Тема 1.2	Система сходящихся сил. Силовой многоугольник. Геометрическое условие равновесия системы. Определение равнодействующей сходящихся сил графическим способом. Определение усилий в двух шарнирно-соединенных стержнях. Проекции силы на оси координат. Аналитическое определение равнодействующей системы.	2	ПК 1.2 ОК 01–04
Плоская система	Практическое занятие. Инструктаж по ТБ	2	
сходящих сил	Определение величины и направления реакций связей и построение силового многоугольника		
	Самостоятельная работа обучающихся. Методика решения задач на равновесие плоской системы сходящихся сил с использованием аналитического уравнения равновесия.	2	
	Содержание учебного материала	7	ПК 1.1
	Понятие пары сил. Вращающее действие пары на тело.	1	ПК 1.2
Тема 1.3 Пара сил	Практическое занятие. Инструктаж по ТБ Момент пары сил, величина, знак. Свойства пар	4	ОК 01–04
•	Самостоятельная работа обучающихся Условие равновесия пары сил	2	
Тема 1.4	Содержание учебного материала	6	ПК 1.1
Плоская система произвольно расположенных сил	Момент силы относительно точки: величина, знак, единицы измерения и условие равенства нулю. Приведение силы и системы сил к данному центру. Главный вектор и главный момент. Частные случаи приведения. Теорема Вариньона. Уравнения равновесия	2	ПК 1.2 ОК 01–04

Наименование Содержание учебного материала и формы организации деятельности обучающихся разделов и тем		Объем в часах	Осваиваемые элементы компетенций
	плоской произвольной системы сил (три вила). Равновесие плоской системы параллельных сил (два вида). Классификация нагрузок — сосредоточение силы, моменты, равномерно-распределенные нагрузки и их интенсивность.		
	Практическое занятие. Инструктаж по ТБ Определение опорных реакций двухопорных и консольных балок	2	
	Самостоятельная работа обучающихся Опоры балочных систем: шарнирно-подвижная, шарнирно-неподвижная, жесткое защемление (заделка) и их реакции. Аналитическое определение опорных реакций балок	2	
Тема 1.5	Содержание учебного материала	8	ПК 1.1
Центр тяжести тела. Центр тяжести плоских фигур	Центр параллельных сил и его свойства. Координаты центра параллельных сил. Сила тяжести. Центр тяжести тела как центр параллельных сил. Координаты центра, тяжести плоской фигуры (тонкой однородной пластины). Статический момент площади плоской фигуры относительно оси; определение, единицы измерения, способ вычисления, свойства.	2	ПК 1.2 ОК 01–04
	Практическое занятие. Инструктаж по ТБ Методика решения задач на определение координат центра тяжести сложных сечений, составленных из простых геометрических фигур и из сечений стандартных профилей проката.	4	
	Самостоятельная работа обучающихся Центр тяжести простых геометрических фигур и фигур, имеющих ось симметрии.	2	
Раздел 2 Сопротивлен		64	
	Содержание учебного материала	8	ПК 1.1
Тема 2.1	Краткие сведения об истории развития «Сопротивление материалов». Упругие и пластические деформации. Основные гипотезы и допущения о свойствах материалов и характере деформирования. Нагрузки и их классификация. Геометрическая схематизация элементов сооружений	2	ПК 1.2 ОК 01–04
Основные положения	Практическое занятие. Инструктаж по ТБ Метод сечений. Внутренние силовые факторы в общем случае нагружения бруса. Основные виды деформации бруса	4	
	Самостоятельная работа обучающихся Напряжения: полное, нормальное, касательное, единицы измерения напряжения.	2	
Тема 2.2	Содержание учебного материала	12	

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем в часах	Осваиваемые элементы компетенций
Растяжение и сжатие	Продольная сила, величина, знак, эпюры продольных сил. Нормальные напряжения в поперечных сечениях стержня. Эпюра нормальных напряжений по длине стержня. Продольные и поперечные деформации при растяжении (сжатии). Коэффициент Пуассона. Закон Гука. Модуль продольной упругости. Определение перемещений поперечных сечений стержня. Механические испытания материалов. Диаграммы растяжения пластичных и хрупких материалов, их механические характеристики. Расчеты на прочность по предельным состояниям. Коэффициенты надежности по нагрузке, по материалу, по назначению и условиям работы. Нормативные и расчетные нагрузки и сопротивления.	4	ПК 1.1 ПК 1.2 ОК 01–04
	Практическое занятие. Инструктаж по ТБ Три типа задач при расчете из условия прочности по предельному состоянию. Расчеты на прочность, подбор сечения и проверку эксплуатационной нагрузки.	6	
	Самостоятельная работа обучающихся Условия прочности по предельному состоянию.	2	
	Содержание учебного материала	6	ПК 1.1
Тема 2.3	Срез и смятие: основные расчетные предпосылки и расчетные формулы, условности расчета.	2	ПК 1.2
Основные положения расчета на срез и	Практическое занятие. Инструктаж по ТБ Примеры расчета сварных соединений	2	ОК 01–04
смятие	Самостоятельная работа обучающихся Расчетные сопротивления на срез и смятие.	2	
	Содержание учебного материала	8	ПК 1.1
Тема 2.4	Понятие о геометрических характеристиках плоских сечений бруса. Моменты инерции: осевой, полярный, центробежный. Зависимости между моментами инерции относительно параллельных осей.	2	ПК 1.2 ОК 01–04
Геометрические характеристики плоских сечений	Практическое занятие. Инструктаж по ТБ Определение главных центральных моментов инерции сложных сечений, составленных из простых геометрических фигур и стандартных прокатных профилей.	4	
	Самостоятельная работа обучающихся	2	
T. A.F.	Главные оси и главные центральные моменты инерции.	10	
Тема 2.5	Содержание учебного материала	10	
Поперечный изгиб прямого бруса	Основные понятия и определения. Внутренние силовые факторы в поперечном сечении бруса: поперечная сила и изгибающий момент. Свойства контуров эпюр. Построение эпюр поперечных	4	ПК 1.1

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем в часах	Осваиваемые элементы компетенций
	сил и изгибающих моментов для наиболее часто встречающихся и для различных видов нагружений статически определимых балок. Чистый изгиб. Нормальные напряжения в произвольной точке поперечного сечения балки. Эпюра нормальных напряжений в поперечном сечении. Наибольшие нормальные напряжения при изгибе, осевой момент сопротивления; единицы измерения. Касательные напряжения при изгибе. Формула Журавского для касательных		ПК 1.2 ОК 01–04
	напряжений в поперечных сечениях балок. сечений. Практическое занятие. Инструктаж по ТБ Расчеты балок на прочность по нормальным и касательным	2	
	Самостоятельная работа обучающихся Эпюры касательных напряжений для балок прямоугольного и двутаврового поперечных сечений по высоте сечения. Моменты сопротивления для простых	4	
	Содержание учебного материала Чистый сдвиг. Деформация сдвига. Закон Гука для сдвига. Модуль сдвига. Расчетная формула при сдвиге.	12 2	
Тема 2.6 Общие понятия о деформации сдвига и	Практическое занятие. Инструктаж по ТБ Условия прочности и жесткости при кручении. Три типа задач при расчете на прочность и жесткость при кручении	7	ПК 1.1 ПК 1.2 ОК 01–04
кручения	Самостоятельная работа обучающихся Кручение прямого бруса круглого сечения. Крутящий момент. Эпюра крутящих моментов. Напряжения в поперечном сечении бруса при кручении.	3	
	Содержание учебного материала	8	
Тема 2.7	Устойчивые и неустойчивые формы равновесия центрально-сжатых стержней. Продольный изгиб. Критическая сила. Критическое напряжение. Гибкость стержня.	2	ПК 1.1
Устойчивость центральных сжатых	Практическое занятие. Инструктаж по ТБ Условие устойчивости. Три типа задач при расчете на устойчивость	4	ПК 1.2 ОК 01–04
стержней	Самостоятельная работа обучающихся Расчет центрально-сжатых стержней на устойчивость по предельному состоянию с использованием коэффициента продольного изгиба.	2	OK 01-04
	Всего:	111	
	из них практических занятий	47	
	лекций	29	
	самостоятельная работа зачет	33 2	

4. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

4.1. Требования к материально-техническому обеспечению

Реализация программы дисциплины требует наличия учебного кабинета «Естественнонаучных дисциплин, физики и технической механики».

Эффективность преподавания курса Технической механики зависит от наличия соответствующего материально-технического оснащения. Это объясняется особенностями курса, в первую очередь его многопрофильностью и практической направленностью.

Оборудование учебного кабинета:

- автоматизированное рабочее место преподавателя;
- автоматизированные рабочие места обучающихся;
- комплект учебно-наглядных пособий;
- техническими средствами обучения: компьютеры с программным обеспечением, проектор;
- экран;
- аудиовизуальные средства схемы и рисунки к занятиям в виде слайдов и электронных презентаций.

Требования к квалификации педагогических кадров, осуществляющих реализацию ППССЗ по специальности, должны обеспечиваться педагогическими кадрами, имеющими среднее профессиональное, высшее образование, соответствующее профилю преподаваемой учебной дисциплины. Опыт деятельности в организациях соответствующей профессиональной сферы является обязательным для преподавателей, отвечающих за освоение обучающимся профессионального учебного цикла.

Преподаватели получают дополнительное профессиональное образование по программам повышения квалификации, в том числе в форме стажировки в профильных организациях не реже одного раза в 5 лет.

4.2. Информационное обеспечение обучения. Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Основные печатные издания

1. Атапин, В. Г. Сопротивление материалов : учебник и практикум для среднего профессионального образования / В. Г. Атапин. — 2-е изд., перераб. и доп. — Москва : Издатель- ство Юрайт, 2021. — 342 с. — (Профессиональное образование). — ISBN 978-5-534-09059-8. — Текст : электронный // ЭБС Юрайт [сайт]. — URL: https://urait.ru/bcode/472762

- 2. Атапин, В. Г. Сопротивление материалов. Практикум: учебное пособие для сред- него профессионального образования / В. Г. Атапин. 2-е изд., испр. и доп. Москва: Изда- тельство Юрайт, 2021. 218 с. (Профессиональное образование). ISBN 978-5-534-04128-6. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/472761
- 3. Атапин, В. Г. Сопротивление материалов. Сборник заданий с примерами их ре- шений : учебное пособие для среднего профессионального образования / В. Г. Атапин. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2021. 151 с. (Профессиональное образо- вание). ISBN 978-5-534-04135-4. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/472763
- 4. Ахметзянов, М. Х. Техническая механика (сопротивление материалов): учебник для среднего профессионального образования / М. Х. Ахметзянов, И. Б. Лазарев. 2-е изд., пе- рераб. и доп. Москва: Издательство Юрайт, 2021. 297 с. (Профессиональное образова- ние). ISBN 978-5-534-09308-7. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/470063
- 5. Бабанов, В. В. Техническая (строительная) механика : учебник и практикум для среднего профессионального образования / В. В. Бабанов. Москва : Издательство Юрайт, 2021. 487 с. (Профессиональное образование). ISBN 978-5-534-10332-8. Текст : элек- тронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/475614
- 6. Бертяев В. Д. Теоретическая и прикладная механика. Самостоятельная и учебно- исследовательская работа студентов : учебное пособие для СПО / В. Д. Бертяев, В. С. Ручин- ский. Санкт-Петербург : Лань, 2021. 420 с. ISBN 978-5-8114-8158-3. Текст : элек- тронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/179024 (дата обращения: 13.01.2022). Режим доступа: для авториз. пользователей.

Основные электронные издания

- 7. Бухгольц, Н. Н. Основной курс теоретической механики : учебное пособие для спо / Н. Н. Бухгольц. Санкт-Петербург : Лань, [б. г.]. Часть 2 : Динамика системы матери- альных точек 2021. 336 с. ISBN 978-5-8114-6766-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/152477 (дата обращения: 13.01.2022). Режим доступа: для авториз. пользователей.
- 8. Васильков, Γ . В. Строительная механика. Динамика и устройство сооружений: учебное пособие для спо / Γ . В. Васильков, З. В. Буйко. Санкт-Петербург: Лань, 2021. 256 с. ISBN 978-5-8114-7012-9. Текст: электронный // Лань: электронно-библиотечная систе- ма. URL: https://e.lanbook.com/book/153952 (дата обращения: 13.01.2022). Режим доступа: для авториз. пользователей.
- 9. Ватаев, А. С. Основы электротехники. Электрические машины и трансформаторы

- 10. : учебное пособие для СПО / А. С. Ватаев, Г. А. Давидчук, А. М. Лебедев. Саратов, Москва : Профобразование, Ай Пи Ар Медиа, 2020. 192 с. ISBN 978-5-4488-0870-8, 978-5-4497-0629-
- 11. Текст : электронный // Электронный ресурс цифровой образовательной среды СПО PROFобразование : [сайт]. URL: https://profspo.ru/books/96967

Дополнительные источники

- 12. Олофинская, В. П. Техническая механика. Сборник тестовых заданий: учебное пособие / В.П. Олофинская. 2-е изд., испр. и доп. Москва: ИНФРА-М, 2021. 132 с. (Среднее профессиональное образование). ISBN 978-5-16-016753-4. Текст: электронный. URL: https://znanium.com/catalog/product/1221360 (дата обращения: 08.01.2022). Режим досту- па: по подписке.
- 13. 2. Васильков, Г. В. Строительная механика. Динамика и устройство сооружений: учебное пособие для спо / Г. В. Васильков, З. В. Буйко. Санкт-Петербург: Лань, 2021. 256 с. ISBN 978-5-8114-7012-9. Текст: электронный // Лань: электронно-библиотечная систе- ма. URL: https://e.lanbook.com/book/153952 (дата обращения: 13.01.2022). Режим доступа: для авториз. пользователей.
 - 14. Sopromato.ru [Электронный ресурс]. URL: https://sopromato.ru/
- 15. Строительная механика [Электронный ресурс]. URL: http://stroitmeh.ru/

5. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем при проведении лабораторных работ, практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований, практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обучения ⁸⁵	Критерии оценки	Методы оценки
Знать:		
законы механики деформи-	– формулирует и применяет законы ме-	Устный опрос
руемого твердого тела, виды	ханики;	Тестирование
деформаций, основные рас-	 применяет метод проекций при опреде- 	Технический дик-
четы	лении усилий в соответствии с заданны-	тант
	ми силами;	Контрольная рабо-
	– называет основные виды деформаций (та
	растяжение и сжатие, сдвиг и кручение,	Оценка результатов
	поперечный и продольный изгиб);	выполнения прак-
	– рассчитывает различные виды дефор-	тических работ
	мации в соответствии с заданием	_
определение направления	 перечисляет типы связей в соответ- 	
реакции связи	ствии с классификацией;	
	 формулирует и применяет принцип 	
	освобождения от связей;	
	– определяет реакции связей в соответ-	
	ствии с заданием	
типы нагрузок и виды опор	 называет типы нагрузок в соответствии 	
балок, ферм, рам	с классификацией;	
	 перечисляет виды опор и их реакции; 	
	 – определяет реакции опор в соответ- 	
	ствии с заданием;	
	 формулирует и применяет правило за- 	
	мены опор опорными реакциями;	
	 применяет метод проекций при опре- 	
	делении опорных реакций в соответствии	
	с заданными силами;	
	– составляет уравнения равновесия	
определение момента силы	 определяет величину и знак момента 	
относительно точки, его	силы относительно точки и момента пары	
свойства;	сил в соответствии с заданием;	
	 перечисляет свойства момента силы; 	
	– формулирует условие равенства момен-	
	та силы нулю	
деформации и напряжения,	 определяет напряжения в соответствии 	
возникающие в строитель-	с заданием и видом нагрузки;	
ных элементах при работе	– определяет деформации в соответствии	
	± ±	
под нагрузкой	с заданием и видом нагрузки	

Результаты обучения ⁸⁵	Критерии оценки	Методы оценки
моменты инерции простых	– перечисляет моменты инерции простых	
сечений элементов и др.	сечений элементов;	
	– определяет моменты инерции простых	
	сечений в соответствии с заданием	
Уметь:		
выполнять расчеты на проч-	– выполняет расчеты на прочность, жест-	Оценка результатов
ность, жесткость и устойчи-	кость и устойчивость элементов соору-	выполнения прак-
вость элементов сооружений	жений в соответствии с заданием	тических работ
определять аналитическим и	-определяет усилия в соответствии с за-	Контрольная рабо-
графическим способами	данием;	та
усилия, опорные реакции	– определяет реакции опор в соответ-	
балок, ферм, рам	ствии с заданием	
определять аналитическим и	 – определяет усилия в стержнях ферм в 	
графическим способами	соответствии с заданием	
усилия в стержнях ферм		
строить эпюры нормальных	– определяет внутренние силовые факто-	
напряжений, изгибающих	ры с помощью метода сечений;	
моментов и др.	– строит эпюры внутренних усилий в со-	
	ответствии со схемой нагружения кон-	
	струкций	

ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ К.Е. ВОРОШИЛОВА»

КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА

по учебной дисциплине

ОПД. 02 Техническая механика

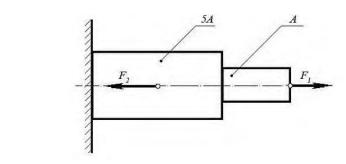
(наименование учебной дисциплины)

08.02.01 Строительство и эксплуатация зданий и сооружений (код, наименование профессии/специальности)

Контрольно-оценочные средства для проведения промежуточной аттестации в форме дифференцированного зачета

- 1. Дайте определение абсолютно твердого тела и материальной точки.
- 2. Что такое сила? Охарактеризуйте эту физическую величину и единицу ее измерения в системе СИ.
- 3. Перечислите и охарактеризуйте основные аксиомы статики.
- 4. Что такое "эквивалентная", "равнодействующая" и "уравновешивающая" система сил?
- 5. Теорема о равновесии плоской системы трех непараллельных сил и ее доказательство.
- 6. В чем разница между распределенной и сосредоточенной нагрузкой? Что такое "интенсивность" плоской системы распределенных сил и в каких единицах она измеряется?
- 7. Что такое "плоская система сходящихся сил"? Определение равнодействующей плоской системы сил геометрическим и графическим методом.
- 8. Сформулируйте условия равновесия плоской системы произвольно расположенных сил.
- 9. Что такое момент силы относительно точки и в каких единицах (в системе СИ) он измеряется? Что такое момент пары сил и какие пары сил считаются эквивалентными?
- 10. Сформулируйте основные свойства пары сил в виде теорем.
- 11. Сформулируйте и докажите теорему о сложении пар сил. Сформулируйте условие равновесия плоской системы пар.
- 12. Сформулируйте и докажите теорему о приведении системы произвольно расположенных сил к данному центру. Что такое главным момент плоской системы произвольно расположенных сил?
- 13. Перечислите свойства главного вектора и главного момента системы произвольно расположенных сил.
- 14. Сформулируйте теорему о моменте равнодействующей системы сил (теорема Вариньона).
- 15. Сформулируйте три основных закона трения скольжения (законы Кулона).
- 16. Что такое коэффициент трения скольжения? От чего зависит его величина?
- 17. Сформулируйте условия равновесия пространственной системы произвольно расположенных сил.
- 18. Дайте определение центра тяжести тела и опишите основные методы его нахождения.
- 19. Дайте определение абсолютному и относительному движению. Что такое траектория точки?
- 20. Перечислите и охарактеризуйте способы задания движения точки.

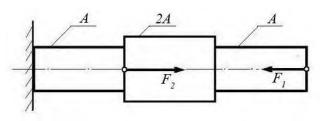
- 21. Что такое скорость точки? Какими единицами (в системе СИ) она измеряется и какими параметрами характеризуется? Что такое средняя и истинная скорость точки?
- 22. Что такое ускорение точки? Какими единицами (в системе СИ) оно измеряется и какими параметрами характеризуется? Что такое среднее и истинное ускорение точки?
- 23. Дайте определение нормального и касательного ускорения. Сформулируйте теорему о нормальном и касательном ускорении.
- 24. Перечислите и охарактеризуйте виды движения точки в зависимости от величины ее касательного и нормального ускорения.
- 25. Дайте определение и поясните сущность поступательного, вращательного, плоскопараллельного и сложного движения твердого тела.
- 26. Перечислите основные законы динамики и поясните их смысл.
- 27. Сформулируйте принцип независимости действия сил и поясните его смысл. Назовите две основные задачи динамики.
- 28. Сформулируйте и поясните сущность метода кинетостатики для решения задач динамики (принцип Д'Аламбера).
- 29. Что такое работа силы? Какими единицами (в системе СИ) она измеряется?
- 30. Сформулируйте теорему о работе силы тяжести и поясните ее сущность.
- 31. Что такое мощность силы? Какими единицами (в системе СИ) она измеряется?
- 32. Что такое энергия? Дайте определение и поясните сущность коэффициента полезного действия.
- 33. Сформулируйте закон сохранения механической энергии и поясните его смысл.
- 34. Перечислите основные задачи науки о сопротивлении материалов. Что такое прочность, жесткость, устойчивость?
- 35. Перечислитеосновные гипотезы и допущения, принимаемых в расчетах сопротивления материалов и поясните суть. Сформулируйте принцип Сен-Венана.
- 36. Перечислите основные виды нагрузок и деформаций, возникающих в процессе работы машин и сооружений.
- 37. В чем заключается метод сечений, используемый при решении задач теоретической механики и сопротивления материалов?
- 38. Какие силовые факторы могут возникать в поперечном сечении бруса и какие виды деформаций они вызывают? Что такое эпюра?
- 39. Что такое напряжение и в каких единицах оно измеряется? В чем принципиальное отличие напряжения от давления?
- 40. Сформулируйте гипотезу о независимости действия сил (принцип независимости действия сил) и поясните ее сущность.
- 41. Сформулируйте закон Гука при растяжении и сжатии и поясните его смысл. Что такое модуль продольной упругости?


- 42. Опишите зависимость между продольной и поперечной деформациями при растяжении и сжатии. Что такое коэффициент Пуассона?
- 43. Сформулируйте условие прочности материалов и конструкций при растяжении и сжатии, представьте его в виде расчетной формулы. Что такое коэффициент запаса прочности?
- 44. Сформулируйте условие прочности материалов и конструкций при сдвиге, представьте его в виде расчетной формулы. Что такое срез (скалывание)?
- 45. Сформулируйте закон Гука при сдвиге и поясните его сущность. Что такое модуль упругости сдвига (модуль упругости второго рода)?
- 46. Что такое полярный момент инерции плоской фигуры? Какими единицами системы СИ он измеряется?
- 47. Что такое осевой момент инерции плоской фигуры? Какими единицами системы СИ он измеряется? Что такое центральный момент инерции?
- 48. Какие деформации и напряжения в сечениях бруса возникают при кручении? Что такое полный угол закручивания и относительный угол закручивания сечения?
- 49. Сформулируйте условие прочности бруса при кручении. Приведите расчетную формулу на прочность при кручении и поясните ее сущность.
- 50. Что такое чистый изгиб, прямой изгиб, косой изгиб? Какие напряжения возникают в поперечном сечении бруса при чистом изгибе?
- 51. Сформулируйте условие прочности балки (бруса) при изгибе. Приведите расчетную формулу и поясните ее сущность.
- 52. Что такое продольный изгиб? Приведите формулу Эйлера для определения величины критической силы при продольном изгибе и поясните ее сущность.
- 53. Что такое критерий работоспособности детали? Назовите основные критерии работоспособности и расчета деталей машин.
- 54. Перечислите наиболее распространенные в машиностроении типы разъемных и неразъемных соединений деталей.
- 55. Достоинства и недостатки клепаных соединений. Перечислите основные типы заклепок по форме головок. Как производится расчет на прочность клепаных соединений?
- 56. Достоинства и недостатки сварочных соединений. Виды сварки. Как производится расчет на прочность сварочных соединений?
- 57. Классификация и основные типы резьбы. Как производится расчет на прочность резьбовых соединений?
- 58. Что такое механическая передача? Классификация механических передач по принципу действия.
- 59. Основные кинематические и силовые соотношения в механических передачах. Что такое механический КПД передачи, окружная скорость, окружная сила, вращающий момент, передаточное число?
- 60. Классификация зубчатых передач. Достоинства и недостатки зубчатых передач.

- 61. Основные элементы и характеристики зубчатого колеса (шестерни). Что такое делительная окружность и модуль зубьев?
- 62. Перечислите способы изготовления зубьев зубчатых колес. Что такое модуль зубьев?
- 63. Характер и причины отказов зубчатых передач. Перечислите способы повышения работоспособности зубчатых передач.
- 64. Классификация ременных передач. Достоинства и недостатки ременных передач и область их применения.
- 65. Классификация цепных передач. Достоинства и недостатки цепных передачи и область их применения.
- 66. В чем отличие вала от оси? Классификация валов и осей по назначению и по геометрической форме.
- 67. Классификация и условные обозначения подшипников качения. Основные типы подшипников качения. Характер и причины отказов подшипников качения.
- 68. Классификация муфт. Перечислите наиболее часто применяемые в машиностроении виды муфт, их достоинства и недостатки.

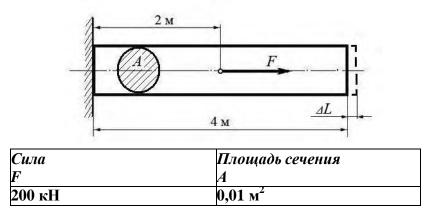
ПРАКТИЧЕСКИЕ ЗАДАНИЯ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Задача №1:


При помощи эпюры напряжений определить наиболее напряженный участок двухступенчатого круглого бруса, нагруженного продольными силами F_1 и F_2 .

Сила	Сила	Площадь сечения
$\boldsymbol{F_1}$	F_2	A
20 кН	80 кН	$0,1 \text{ m}^2$

Задача №2:


Ступенчатый брус нагружен продольными силами F_1 и F_2 . Построить эпюру нормальных напряжений в сечениях бруса и указать наиболее напряженный участок. Вес бруса не учитывать.

Сила F ₁	Сила F2	Площадь сечения
		\boldsymbol{A}
10 кН	25 кН	0.2 m^2

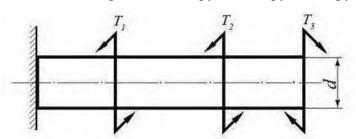
Задача №3:

Используя закон Гука, найти удлинение ΔL однородного круглого бруса, если известно, что он изготовлен из алюминиевого сплава, имеющего модуль упругости $E=0.4\times10^5~M\Pi a$. Вес бруса не учитывать.

(Ответ: общее удлинение бруса $\Delta L = FL / (EA) = 2 \times 10^5 \times 2 / 0,4 \times 10^{11} \times 0,01 = 10^{-3}$ м или $\Delta L = 1,0$ мм)

Задача №4:

Однородный брус длиной L и поперечным сечением площадью A нагружен растягивающей силой F. Используя закон Гука, найти удлинение бруса ΔL , если известно, что он изготовлен из стального сплава, имеющего модуль упругости $E = 2.0 \times 10^5 \, M\Pi a$. Вес бруса не учитывать.

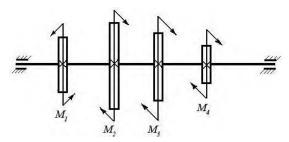


(Ответ: удлинение бруса $\Delta L = FL$ / (EA) = $5 \times 10^5 \times 10$ / $2 \times 10^{11} \times 0.05 = 5 \times 10^{-4}$ м или $\Delta L = 0.5$ мм)

Задача №5:

Однородный круглый брус жестко защемлен одним концом и нагружен внешними вращающими моментами $T_1,\,T_2$ и $T_3.$

Построить эпюру крутящих моментов и выполнить проверочный расчет бруса на прочность, при условии, что предельно допустимое касательное напряжение: $[\tau] = 30 \, M\Pi a$. При расчете принять момент сопротивления кручению круглого бруса $W \approx 0.2 \, d^3$.

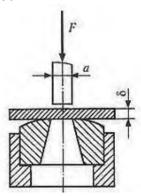


Вращающий момент	Вращающий	Вращающий	Диаметр бруса
T_1	момент	момент	d
	T_2	T_3	
30 Нм	40 Нм	30 Нм	0,02 м

(Ответ: максимальное касательное напряжение в брусе - 25 МПа, что меньше предельно допустимого, т.е. брус выдержит заданную нагрузку.)

Задача №6:

Однородный круглый вал нагружен вращающими моментами M_1 , M_2 , M_3 и M_4 . Построить эпюру крутящих моментов в сечениях вала и определить наиболее напряженный участок. С помощью формулы $M_{\kappa p} \approx 0.2 \ d^3 \ [\tau]$ определить минимальный допустимый диаметр вала d из условия прочности.

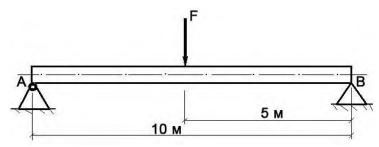


[τ]	M_1	M_2		M_4
30 МПа	160 Нм	50 Нм	80 Нм	30 Нм

(Ответ: диаметр вала d из условия прочности должен быть не менее 30

мм.) Задача №7

Определите силу F, необходимую для продавливания круглым пуансоном диаметром a отверстия в листе металла толщиной δ . Предел прочности листового металла на срез: $[\tau] = 360 \ \mathrm{MHz}$.

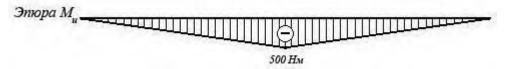

Толщина	листа	Диаметр пробойника	
металла		a	
δ			
0,5 мм		10 мм	

 $(\text{Ответ: } F \geq \text{ Acp} \times [\tau] \, \geq \, \delta \times \pi \times a \times [\tau] \, \geq \, 0,0005 \times 3,14 \times 0,01 \times 360 \times 10^6 \, \, \geq \, 5652 \; H,$

здесь Аср – площадь цилиндрической поверхности, по которой осуществляется срез)

Задача №8

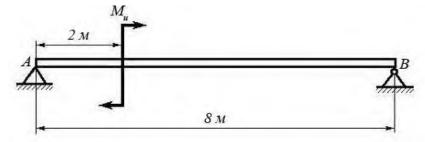
Брус постоянного сечения опирается на две опоры, одна из которых шарнирная, вторая – угловая (ребро). В середине бруса приложена поперечная изгибающая сила $F = 200 \ H$. Построить эпюру изгибающих моментов и показать наиболее нагруженное сечение бруса. Вес бруса не учитывать.



Решение задачи:

1. Исходя из того, что реакция угловой опоры направлена по нормали к оси бруса, составляем уравнение равновесия относительно опоры A (из условия равновесия сумма моментов отностельно любой точки бруса равна нулю) и определяем реакцию опоры B:

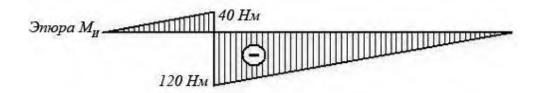
$$10 R_B - 5 F = 0 \implies R_B = 5 F / 10 = 100 H;$$


2. Строим эпюру изгибающих моментов, начиная от опоры В. Наиболее нагруженное сечение бруса (изгибающий момент - 500 Нм) находится в его середине.

Задача №9

Брус постоянного сечения опирается на две опоры, одна из которых угловая (ребро), вторая — шарнирная. Брус нагружен изгибающим моментом $Mu = 160 \, Hm$.

Построить эпюру изгибающих моментов и показать наиболее нагруженное сечение бруса. Вес бруса не учитывать.


Решение задачи:

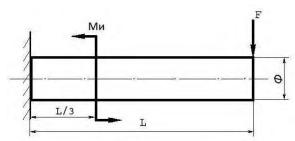
1. Исходя из того, что реакция угловой опоры направлена по нормали к оси бруса, составляем уравнение равновесия относительно опоры В (из условия равновесия сумма моментов отностельно любой точки бруса равна нулю) и определяем реакцию опоры А:

$$8 R_A - M_u = 0 \implies R_A = M_u / 8 = 20 H;$$

2. Строим эпюру изгибающих моментов, начиная от опоры А.

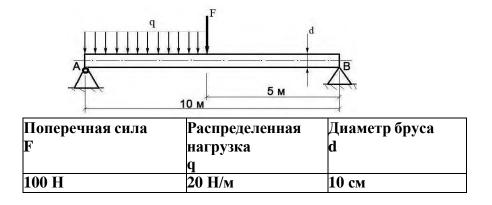

Наиболее нагруженное сечение бруса (изгибающий момент - 120 Нм) находится рядом с сечением, в котором приложен изгибающий момент Ми (со стороны опоры В)

Задача №10:

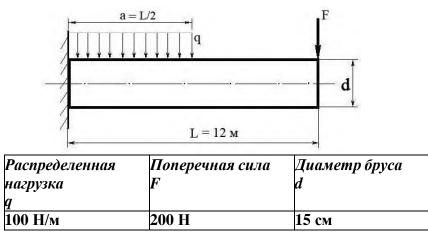

Построить эпюру изгибающих моментов и выполнить расчет квадратного бруса на прочность, при условии, что предельно допустимое нормальное напряжение при изгибе: $[\sigma] \le 100 \text{ M}\Pi a$.

Вес бруса не учитывать.

Задача №11


Построить эпюру изгибающих моментов и выполнить расчет бруса на прочность, при условии, что предельно допустимое нормальное напряжение при изгибе: $[\sigma] \le 100$ МПа. Вес бруса не учитывать.

Изгибающий	Поперечная сила	Длина бруса	Диаметр бруса
момент Ми	F	L	$oldsymbol{\phi}$
25 Нм	250 H	12 м	8 см


Задача №12

Построить эпюру изгибающих моментов и выполнить расчет круглого бруса на прочность, при условии, что предельно допустимое нормальное напряжение при изгибе: $[\sigma] \le 100$ МПа.

Задача №13

Построить эпюру изгибающих моментов и выполнить расчет бруса на прочность, при условии, что предельно допустимое нормальное напряжение при изгибе: $[\sigma] \le 100$ МПа. Брус считать невесомым.

Критерии оценки знаний студентов для промежуточной аттестации

Каждый полно и правильно представленный ответ на первые два вопроса — 10 баллов; Правильно и в полном объеме выполненное расчетное задание — 30 баллов; Правильный и полный ответ на дополнительный вопрос — 5 баллов; Максимальное количество баллов — 60.