Документ подписан простой электронной подписью Информация о владельце:

ФИО: Гнатюк Сергей Иванович ПОЛИТЕХНИ ЧЕСКИЙ КОЛЛЕДЖ ФЕДЕРАЛЬНОГО Должность: Первый проректор Дата подписания: 20.10.25 Д.Д. СТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО Уникальный программный ключ: УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ 5ede28fe5b714e6893375543741657777774760СУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ К.Е. ВОРОШИЛОВА»

РАБОЧАЯ ПРОГРАММА учебной дисциплины *ОП.03 Материаловедение* (наименование учебной дисциплины)

35.02.08 Электротехнические системы в агропромышленном комплексе (АПК) (код, наименование профессии/специальности)

Рассмотрено и согласовано цикловой комиссией сельское хозяйство, строительство и природообустройство.

Протокол № 2 от «02» сентября 2025 г.

Разработана на основе ФГОС СПО РФ и ПООП СПО для специальности 35.02.08 Электротехнические системы в агропромышленном комплексе (АПК) (утвержден Приказом Министерства образования и науки от 27 мая 2022 года № 368).

Организация разработчик: Политехнический колледж ЛГАУ

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ОПД.04 Материалы и изделия

1.1. Область применения программы учебной дисциплины

Рабочая программа учебной дисциплины (далее — рабочая программа) является частью освоения программ подготовки специалистов среднего звена (далее ППССЗ) в соответствии с ФГОС СПО РФ и ПООП СПО для специальности 35.02.08 Электротехнические системы в агропромышленном комплексе (АПК).

Рабочая программа учебной дисциплины ОП.03 Материаловедение по специальности 35.02.08 Электротехнические системы в агропромышленном комплексе (АПК) может быть использована на базе среднего (полного общего) образования, в профессиональном обучении и дополнительном профессиональном образовании.

1.2. Цели и задачи учебной дисциплины, требования к результатам освоения учебной дисциплины

Учебная дисциплина ОП.03 Материаловедение относится к общепрофессиональному циклу.

Целью реализации основной образовательной программы среднего общего образования по предмету ОП.03 Материаловедение является освоение содержания предмета Материаловедение и достижение обучающимися результатов изучения в соответствии с требованиями, установленными ФГОС СПО РФ и ПООП СПО.

В результате освоения учебной дисциплины обучающийся должен знать:

- материалы, используемые для изготовления труб и средств крепления;
- свойства металлов, строение металлов, методы их испытаний;
- виды чугунов, влияние примесей на структуру и свойства чугунов, маркировку;
- состав углеродистых и легированных сталей, влияние примесей и легирующих элементов на структуру и свойства стали, маркировку;
- виды термической обработки стали;
- свойства и область применения цветных металлов и сплавов, маркировку;
- виды, основные свойства и область применения композитных материалов;
- виды, основные свойства и область применения уплотнительных, герметизирующих, клеящих, изолирующих материалов.

В результате освоения учебной дисциплины обучающийся должен уметь:

- выбирать материалы и сортамент труб для газопроводов, используя нормативно-справочную литературу;
- определять по виду решеток название металла, определять механические свойства металлов с использованием справочной литературы, проводить испытания образцов;
- определять марки чугунов по справочной литературе;
- определять марки стали по справочной литературе;
- определять стадии термической обработки стали по графику;
- определять марки цветных металлов и сплавов по справочной литературе;
- определять назначение композитных материалов;

определять назначение уплотнительных, герметизирующих, клеящих, изолирующих материалов.

2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Код ПК, ОК	Умения	Знания
ОК 1,	- выбирать материалы на основе	- области применения материалов;
OK 2,	анализа их свойств для конкретного	-классификацию и маркировку
ПК 1.1-ПК 1.3.,	применения;	основных материалов, применяемых
ПК 3.1-ПК 3.3.	- выбирать способы соединения	в электрооборудовании;
	материалов и деталей;	- методы защиты от коррозии;
	- назначать способы и режимы	- способы обработки материалов;
	упрочения деталей и способы их	- инструменты и станки для
	восстановления при ремонте	обработки металлов резанием,
	электрооборудования исходя из их	методику расчета режимов резания.
	эксплуатационного назначения;	
	- обрабатывать детали из основных	
	материалов;	

3. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ 3.1. Тематический план учебной дисциплины **ОП.03 Материаловедение**

Вид учебной работы	Количество часов		
1	2		
Максимальная учебная нагрузка (всего)	49		
Обязательная аудиторная учебная нагрузка (всего)	34		
в т. ч.:			
теоретическое обучение	12		
практические занятия	20		
Самостоятельная работа обучающегося	15		
Промежуточная аттестация:	2		
дифференцированный зачет			
ИТОГО	49		

3.2. Содержание обучения по учебной дисциплине ОП.03 Материаловедение

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем в часах	Осваиваемые элементы компетенций	
Раздел 1 Основы мате	риаловедения	40		
Тема 1.1	Содержание учебного материала	9	ОК 1, ОК 2, ПК 1.1-ПК 1.3, ПК	
Кристаллическое	Постановка целей и задач изучения дисциплины «Материалы и изделия» в учреждениях	2		
строение металлов и	среднего профессионального образования. Признаки металлов и сплавов, их виды.	3.1ПК 3.3.		
сплавов	Кристаллические решетки, их типы.			
	Практическое занятие. Инструктаж по ТБ	2		
	Аллотропия металлов. Кристаллизация.			
	Самостоятельная работа обучающихся	2		
	Дефекты кристаллических решеток, их влияние на свойства металлов.			
	Содержание учебного материала	7	ОК 1, ОК 2, ПК	
	Физические, механические, технологические свойства металлов и сплавов. Характеристика	2	1.1-ПК 1.3, ПК	
	прочности. Диаграмма растяжения металлов Определение твердости материала.		3.1ПК 3.3.	
Тема 1.2	Практическое занятие. Инструктаж по ТБ	4		
Основные свойства	Испытание металлов на твердость. Испытание на растяжение образцов из			
металлов и сплавов	малоуглеродистой стали. Испытание опытного образца на ударную вязкость Испытание на			
	усталость и ударную вязкость.			
	Самостоятельная работа обучающихся.	1		
	Изучение микроструктуры стали и чугуна.			
	Содержание учебного материала	6	ОК 1, ОК 2, ПК	
	Виды чугунов. Влияние примесей на структуру и свойства чугунов. Серые и белые	2	1.1-ПК 1.3, ПК	
Тема 1.3	чугуны.		3.1ПК 3.3.	
Чугуны	Практическое занятие. Инструктаж по ТБ	2		
тутупы	Модифицированный чугун.			
	Самостоятельная работа обучающихся	2		
	Ковкие и высокопрочные чугуны.			
Тема 1.4	Содержание учебного материала	5	ОК 1, ОК 2, ПК	
Углеродистые стали	Состав углеродистых сталей, влияние примесей на структуру и свойства стали.	1	1.1-ПК 1.3, ПК 3.1ПК 3.3.	
	Практическое занятие. Инструктаж по ТБ	2		

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем в часах	Осваиваемые элементы компетенций	
	Изучение марок углеродистых сталей			
	Самостоятельная работа обучающихся	2		
	Классификация. Маркировка углеродистых сталей			
Тема 1.5	Содержание учебного материала	4	ОК 1, ОК 2, ПК	
Легированные	Влияние легированных элементов на механические свойства стали. Классификация.	1	1.1-ПК 1.3, ПК	
стали	Область применения. Инструментальные стали.		3.1ПК 3.3.	
	Практическое занятие. Инструктаж по ТБ	2		
	Изучение марок легированных сталей			
	Самостоятельная работа обучающихся	1		
	Стали с особыми физическими свойствами. Маркировка по ГОСТу.			
	Содержание учебного материала	5	ОК 1, ОК 2, ПК	
Tr. 1.6	Виды термической обработки стали. Сущность отжима, его виды. Нормализация, ее	1	1.1-ПК 1.3, ПК	
Тема 1.6	назначение. Отпуск стали, виды. Закалка, ее назначение.		3.1ПК 3.3.	
Основные сведения	Практическое занятие. Инструктаж по ТБ	2		
о термической	Режимы термической обработки углеродистых сталей			
обработке металлов	Самостоятельная работа обучающихся	2		
	Факторы, определяющие режим термической обработки.		I	
	Содержание учебного материала	4		
	Сплавы на основе меди, олова, цинка. Медно-цинковые сплавы. Сплавы меди с оловом.	1		
Тема 1.7	Сплавы на алюминиевой основе.		ОК 1, ОК 2, ПК	
Сплавы цветных	Практическое занятие. Инструктаж по ТБ	2	1.1-ПК 1.3, ПК	
металлов	Изучение марок сплавов меди		3.1ПК 3.3.	
	Самостоятельная работа обучающихся	1		
	Сплавы титана и магния. Область применения, маркировка.			
Раздел 2 Коррозия ме		10		
11	Содержание учебного материала	6		
	Виды коррозии. Механизм химической и электрохимической коррозии.	2	1	
Гема 2.1	Межкристаллитная коррозия.		ОК 1, ОК 2, ПК	
Основы теории	Практическое занятие. Инструктаж по ТБ	2	1.1-ПК 1.3, ПК	
коррозии	Атмосферная коррозия. Факторы, влияющие на скорость коррозии.		3.1ПК 3.3.	
• •	Самостоятельная работа обучающихся	2	1	
	Коррозионная стойкость металлов			

Наименование	Содержание учебного материала и формы организации деятельности обучающихся	Объем	Осваиваемые
разделов и тем		в часах	элементы
			компетенций
	Содержание учебного материала	4	
Тема 2.2	Практическое занятие. Инструктаж по ТБ	2	ОК 1, ОК 2, ПК
Способы защиты	Активные и пассивные способы защиты трубопроводов от коррозии		1.1-ПК 1.3, ПК
трубопроводов от	Самостоятельная работа обучающихся	2	3.1ПК 3.3.
коррозии	Активные и пассивные способы защиты от коррозии. Материалы для защиты материалов		3.111K 3.3.
	от коррозии.		
	Всего:	49	
	из них практических занятий	20	
	лекций	12	
	самостоятельная работа	15	
	зачет	2	

4. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

4.1. Требования к материально-техническому обеспечению

Реализация программы дисциплины требует наличия кабинета «Материаловедение».

Эффективность преподавания курса Материаловедения зависит от наличия соответствующего материально-технического оснащения. Это объясняется особенностями курса, в первую очередь его многопрофильностью и практической направленностью.

Оборудование кабинета:

- рабочее место преподавателя и рабочие места по количеству обучающихся;
- технические средства обучения: компьютер с программным обеспечением, проектор;
 - экран;
- аудиовизуальные средства схемы и рисунки к занятиям в виде слайдов и электронных презентаций;
 - наглядные пособия по материалам и изделиям и т.п.);
 - наборы элементов (труб, муфт, задвижек, манометров и т.д.).

Приводится перечень средств обучения, включая тренажеры, модели, макеты, оборудование, технические средства, в т. ч. аудиовизуальные, компьютерные и телекоммуникационные и т. п. (количество не указывается)

Требования к квалификации педагогических кадров, осуществляющих реализацию ППСС3 обеспечиваться ПО специальности, должны педагогическими кадрами, имеющими среднее профессиональное, высшее образование, соответствующее профилю преподаваемой учебной дисциплины. Опыт деятельности в организациях соответствующей профессиональной сферы обязательным преподавателей, отвечающих является ДЛЯ за освоение обучающимся профессионального учебного цикла.

Преподаватели получают дополнительное профессиональное образование по программам повышения квалификации, в том числе в форме стажировки в профильных организациях не реже одного раза в 5 лет.

4.2. Информационное обеспечение обучения. Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Основные печатные издания

- 1. Моряков О.С. Материаловедение (по техническим специальностям) М.: ОИЦ «Академия», 2021.
 - 2. Черепахин А.А. Материаловедение М.: ООО «КноРус», 2013.
- 3. Сеферов Г.Г., Батиенков В.Т., Фоменко А.Л. Материаловедение: учебник/ под ред. В.Т. Батиенкова М.: ИНФРА-М, 2020-150 с.

- 4. Сеферов Г.Г., Батиенков В.Т. Материаловедение: учеб. пособие М.: РИОР, 2020
- 5. Орлов К.С. Материалы и изделия для санитарно-технических устройств и систем обеспечения микроклимата: учебник М.: ИНФРА-М, 2005, 2019 183 с.
- 6. Сапунов, С. В. Материаловедение : учебное пособие для спо / С. В. Сапунов. Санкт-Петербург : Лань, 2020. 208 с. ISBN 978-5-8114-6368-8.
- 7. Земсков, Ю. П. Материаловедение : учебное пособие для спо / Ю. П. Земсков, Е. В. Асмолова. Санкт-Петербург : Лань, 2020. 228 с. ISBN 978-5-8114-5790-8.
- 8. Воронцов, В. М. Архитектурное материаловедение : учебник для спо / В. М. Воронцов. 2-е изд., стер. Санкт-Петербург : Лань, 2021. 408 с. ISBN 978-5-8114-8045-6.

Основные электронные издания

- 9. Плошкин, В. В. Материаловедение: учебник для среднего профессионального образования / В. В. Плошкин. 3-е изд., перераб. и доп. Москва: Издательство Юрайт, 2021. 463 с. (Профессиональное образование). ISBN 978-5-534-02459-3. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/470071 (дата обращения: 12.05.2021).
- 10. Материаловедение и технология материалов. В 2 ч. Часть 1: учебник для среднего профессионального образования / Г. П. Фетисов [и др.]; под редакцией Г. П. Фетисова. 8-е изд., перераб. и доп. Москва: Издательство Юрайт, 2021. 386 с. (Профессиональное образование). ISBN 978-5-534-09896-9. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/475384 (дата обращения: 12.05.2021).
- 11. Материаловедение и технология материалов. В 2 ч. Часть 2: учебник для среднего профессионального образования / Г. П. Фетисов [и др.]; под редакцией Г. П. Фетисова. 8-е изд., перераб. и доп. Москва: Издательство Юрайт, 2021. 389 с. (Профессиональное образование). ISBN 978-5-534-09897-6. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/475385 (дата обращения: 12.05.2021).
- 12. Сеферов Г.Г., Батиенков В.Т., Сеферов Г.Г., Фоменко А.Л. Материаловедение: учебник/ под ред. В.Т. Батиенкова М.: ИНФРА-М, 2020 (Режим доступа Информационный портал Электронно-библиотечная система Znanium.com): URL: http://znanium.com/ (дата обращения: 12.05.2021)
- 13. Сеферов Г.Г., Батиенков В.Т. Материаловедение: учеб. пособие М.: РИОР, 2020 (Режим доступа Информационный портал Электронно-библиотечная система Znanium.com): URL: http://znanium.com/ (дата обращения: 12.05.2021)

5. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем при проведении лабораторных работ, практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований, практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий, проектов, исследований.

Результаты обучения	Формы и методы контроля и
(освоенные умения, усвоенные знания)	оценки результатов обучения
1	2
Умения	
выбирать материалы на основе анализа их свойств для конкретного применения; выбирать способы соединения материалов Знания:	Оценка результатов выполнения заданий, приемов, упражнений. Оценка выполненных самостоятельных работ.
области применения материалов ;классификацию и маркировку основных материалов; методы защиты от коррозии; способы обработки материалов влияние примесей на структуру и свойства чугунов, маркировку; состав углеродистых и легированных сталей, влияние примесей и легирующих элементов на структуру и свойства стали, маркировку; виды термической обработки стали; свойства и область применения цветных металлов и сплавов, маркировку; виды, основные свойства и область применения композитных материалов;	Контрольная работа. Самостоятельная работа. Защита реферата. Выполнение проекта. Наблюдение за выполнением практического задания (деятельностью студента). Оценка выполнения практического задания (работы). Подготовка и выступление с докладом, сообщением, презентацией

Приложение 1

ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ К.Е. ВОРОШИЛОВА»

КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА учебной дисциплины *ОП.03 Материаловедение*

(наименование учебной дисциплины)

35.02.08 Электротехнические системы в агропромышленном комплексе (АПК)

(код, наименование профессии/специальности)

Пояснительная записка

Учебным планом и рабочей программой дисциплины «Материаловедение» в качестве формы промежуточной аттестации обучающихся по специальности

35.02.08 Электротехнические системы в агропромышленном комплексе (АПК) предусмотрен дифференцированный зачет.

Цель - проверка степени усвоения обучающимися изученного материала, сформированности общих и профессиональных компетенций по специальности, предусмотренных ФГОС.

Форма проведения промежуточного контроля знаний студентов по дисциплине «Материаловедение» - тестирование. Для проведения дифференцированного зачета разработано 5 вариантов теста.

Шкала оценки образовательных достижений

«Отлично» - Студент решает тест и набирает от 19 до 20 баллов.

«Хорошо» - Студент решает тест и набирает от 16 до 18 баллов.

«Удовлетворительно» - Студент решает тест и набирает от 14 до 15 баллов.

«Не зачет» - Студент решает тест и набирает менее 13 баллов.

Правильный ответ равен одному баллу.

- 1. Для кристаллического состояния вещества характерны:
- а) высокая электропроводность; б) анизотропия свойств; в) высокая пластичность; г) коррозионная устойчивость.
- 2. Твердое тело, представляющее собой совокупность неориентированных относительно друг друга зерен-кристаллитов, представляет собой:
- а) текстуру; б) поликристалл; в) монокристалл; г) композицию.
- 3. Кристалл формируется путем правильного повторения микрочастиц (атомов, ионов, молекул) только по одной координате:
- а) верно; б) верно только для монокристаллов; в) неверно; г) верно только для поликристаллов.
- 4. Для аморфных материалов характерно:
- а) наличие фиксированной точки плавления; б) наличие температурного интервала плавления; в) отсутствие способности к расплавлению.
- 5. Вещество, состоящее из атомов одного химического элемента, называется:
- а) химически чистым; б) химически простым; в) химическим соединением.
- 6. Вещество, состоящее из однородных атомов или молекул, и содержащее некоторое количество другого вещества, не превышающее заданного значения, называется:

- а) химически чистым; б) химически простым; в) химическим соединением.
- 7. Укажите виды точечных статических дефектов кристаллической структуры:
- а) дислокации; б) вакансии; в) фононы; г) междоузлия.
- 8. Укажите основные характеристики структуры материала:
- а) концентрация носителей заряда; б) степень упорядоченности расположения микрочастиц; в) наличие и концентрация дефектов;
- г) электропроводность.
- 9. Способность некоторых твердых веществ образовывать несколько типов кристаллических структур, устойчивых при различных температурах и давлениях, называется:
- а) полиморфизмом; б) поляризацией; в) анизотопией; г) изотропией.
- 10. Укажите тип химической связи, который обеспечивает максимальную концентрацию носителей заряда без приложения внешних энергетических воздействий:
- а) ионная; б) ковалентная; в) металлическая; г) водородная.
- 11. Какие группы материалов выделяют в соответствии со степенью упорядоченности микрочастиц:
- а) кристаллические; б) аморфные; в) конструкционные; г) твердые растворы.
- 12. Основная классификация материалов ЭС базируется на следующих свойствах:
- а) механические; б) оптические; в) электрические; г) химические.
- 13. Указать параметр материала, в соответствии со значением которого, материал может быть отнесен к группе электротехнических:
- а) твердость; б) пластичность; в) электропроводность; г) светопоглощение.
- 14. Для каких видов материалов возможно наличие доменной структуры:
- а) проводниковые; б) полупроводниковые; в) диэлектрические; г) магнитные.
- 15. В соответствии со значением коэрцитивной силы материалы ЭС классифицируют на:
- а) активные и пассивные диэлектрики; б) высокопроводные и резистивные материалы; в) магнитомягкие и магнитотвердые материалы; г) аморфные и кристаллические полупроводники.
- 16. В соответствии с зависимостью диэлектрической проницаемости от напряженности внешнего поля диэлектрические материалы классифицируют на:
- а) полярные и неполярные материалы; б) линейные и нелинейные материалы; в) термопластичные и термореактивные материалы.
- 17. Классификация конструкционных материалов электронных средств осуществляется по:
- а) теплопроводности; б) электропроводности; в) химическому составу; г) светоотражению.
- 18. Способностью сопротивляться внедрению в поверхностный слой другого более твердого тела обладают:
- а) хрупкие материалы; б) твердые материалы; в) пластичные материалы; г) упругие материалы.

- 19. Свойства материалов, характеризующие их поведение при обработке, называются:
- а) эксплуатационными; б) технологическими; в) потребительскими; г) механическими.
- 20. К теплофизическим свойствам материалов ЭС относятся:
- а) теплопроводность; б) электропроводность; в) тепловое расширение; г) светопропускание.

- 1. Проявлением какого вида свойств материалов является стойкость к термоударам:
- а) механических; б) химических; в) теплофизических; г) химических.
- 2. К электрическим параметрам материалов ЭС относятся:
- а) концентрация носителей заряда; б) теплопроводность; в) подвижность носителей заряда; г) электропроводность.
- 3. Деформируемость является одним из:
- а) эксплуатационных свойств; б) технологических свойств; в) потребительских свойств.
- 4. Потребительскими называют свойства материалов:
- а) определяющие их пригодность для создания изделий заданного качества; б) характеризующие их поведение при обработке; в) характеризующие их применимость в данной эксплуатационной области.
- 5. Укажите стадии реакции хрупких материалов на нагружение:
- а) упругая деформация; б) пластическая деформация; в) разрушение.
- 6. Нагревостойкость это:
- а) способность хрупких материалов выдерживать без разрушения резкие смены температуры; б) способность материалов сохранять без изменения химический состав и структуру молекул при повышении температуры; в) способность материалов отводить тепло, выделяющееся при работе электронного компонента.
- 7. Магнитные свойства материалов обусловлены:
- а) вращением электронов вокруг собственной оси; б) взаимным притяжением ядра атома и электронов; в) орбитальным вращением электронов.
- 8. Для повышения устойчивости материалов к воздействию окружающей среды могут использоваться следующие покрытия:
- а) резистивные; б) магнитодиэлектрические; в) полимерные; г) лакокрасочные.
- 9. Самопроизвольное разрушение твердых материалов, вызванное химическими или электрохимическими процессами, развивающимися на их поверхности при взаимодействии с внешней средой, называется:
- а) коррозией; б) диффузией; в) эрозией; г) адгезией.
- 10. Наибольшей коррозионной устойчивостью обладают следующие металлы:
- а) медь; б) хром; в) никель; г) железо.
- 11. Химические свойства материалов определяются:
- а) элементарным химическим составом; б) типом химической связи; в) концентрацией носителей заряда.

- 12. Какое из утверждений является верным:
- а) скорость коррозии повышается при повышении температуры окружающей среды; б) скорость коррозии повышается при понижении температуры окружающей среды; в) скорость коррозии не зависит от температуры окружающей среды.
- 13. Значение удельного объемного сопротивления лежит в основе классификации:
- а) сильномагнитных материалов; б) слабомагнитных материалов; в) не используется при классификации материалов.
- 14. Основным параметром при классификации материалов по коррозионной устойчивости является:
- а) количество оставшегося после коррозии материала; б) толщина разрушающегося за год слоя; в) толщина необходимого антикоррозионного покрытия; г) химический состав.
- 15. Классификация дефектов кристаллических структур осуществляется по:
- а) времени существования дефектов; б) размерности дефектов; в) вероятности возникновения; г) дефекты не классифицируются.
- 16. К основным параметрам проводниковых материалов относятся:
- а) контактная разность потенциалов, предел прочности, твердость; б) сила тока, напряжение, сопротивление, термо-ЭДС; в) пластичность, магнитная проницаемость, свариваемость; г) удельная электропроводность, температурный коэффициент удельного сопротивления, предел прочности при растяжении.
- 17. Удельное сопротивление проводниковых материалов определяется следующими факторами:
- а) геометрические размеры образца; б) внутренние кристаллические напряжения; в) освещенность; г) химический состав.
- 18. Какая из групп проводниковых материалов является композиционной:
- а) припои; б) проводящие модификации углерода; в) керметы; г) материалы высокой проводимости.
- 19. Для чего используются сплавы тугоплавких и благородных металлов:
- а) для изготовления шин питания; б) для изготовления электровакуумных приборов; в) для изготовления магнитопроводов; г) для изготовления обмоточных проводов.
- 20. Удельное поверхностное сопротивление пленочного проводника представляет собой:
- а) удельное объемное сопротивление, умноженное на толщину пленки; б) удельное объемное сопротивление, деленное на толщину пленки; в) равно удельному объемному сопротивлению; г) не зависит от удельного объемного сопротивления.

- 1. Какие материалы относятся к группе материалов высокой проводимости:
- а) тантал и рений; б) медь и алюминий; в) графит и пиролитический углерод; г) цинк и хром.

- 2. Какие вещества относят к проводникам второго рода:
- а) металлические расплавы; б) электролиты; в) твердые металлы; г) естественножидкие металлы.
- 3. Какое из утверждений является верным:
- а) в качестве проводниковых материалов могут использоваться только чистые металлы; б) в качестве проводниковых материалов могут использоваться только металлические сплавы; в) в качестве проводниковых материалов могут использоваться композиционные материалы.
- 4. Какое из утверждений является верным:
- а) при введении примесей удельное сопротивление сплава падает; б) при введении примесей удельное сопротивление сплава возрастает; в) удельное сопротивление сплава не зависит от его состава.
- 5. Контактное сопротивление тем ниже:
- а) чем больше разность между энергией Ферми сопрягаемых проводников; б) чем меньше разность между энергией Ферми сопрягаемых проводников; в) контактное сопротивление не зависит от энергии Ферми сопрягаемых проводников.
- 6. Термоэлектродвижущая сила чистых металлов существенно меньше, чем термоэлектродвижущая сила сплавов:
- а) верно; б) неверно; в) верно в отдельных случаях.
- 7. Какое из утверждений является верным:
- а) в естественных условиях любой газ является проводником электрического тока; б) газ никогда не может стать проводником электрического тока; в) при превышении предела ионизации газ становится равновесной проводящей средой.
- 8. Какое значение удельного объемного сопротивления характерно для проводниковых материалов ЭС:
- a) $\rho < 10-5 \text{ Om·m}$; б) $\rho < 10-10 \text{ Om·m}$; в) $\rho > 10-5 \text{ Om·m}$; г) $\rho = 0$.
- 9. Возрастание внутренних кристаллических напряжений в проводниковом материале:
- а) приводит к уменьшению удельного объемного сопротивления; б) приводит к увеличению удельного объемного сопротивления; в) не влияет на удельное объемное сопротивление.
- 10. Какие из утверждений являются верными:
- а) различие удельного сопротивления пленочного и крупногабаритного образцов, изготовленных из одного проводникового материала, связаны с различиями способов их получения; б) различие удельного сопротивления пленочного и крупногабаритного образцов, изготовленных из одного проводникового материала, обусловлено размерным эффектом; в) пленочный и крупногабаритный образцы, изготовленные из одного проводникового материала, обладают равным удельным сопротивлением.
- 11. Основу сплавов высокого сопротивления составляют следующие металлы:
- а) медь и алюминий; б) хром и никель; в) олово и свинец; г) золото и платина.
- 12. Резистивные материалы на основе кремния (силициды) используют для

изготовления:

- а) пленочных сопротивлений; б) проволочных сопротивлений; в) нагревательных элементов; г) термопар.
- 13. Сплавы высокого сопротивления используются для изготовления:
- а) технических сопротивлений; б) прецизионных сопротивлений; в) пленочных проводников; г) пленочных сопротивлений.
- 14. Температурный коэффициент удельного сопротивления резистивного материала, использующегося для изготовления прецизионного сопротивления:
- 15. а) должен быть минимальным; б) должен быть максимальным;
- в) не учитывается при выборе материала.
- 16. Какое из утверждений является верным:
- а) в качестве резистивных материалов могут использоваться только сплавы; б) в качестве резистивных материалов не могут использоваться химически простые (элементарные) материалы; в) наиболее технологичными резистивными материалами являются керметы.
- 17. К простым полупроводникам относятся:
- a) PbS и GaP; б) SiC и Te; в) Ge и Si; г) Р и GaAs.
- 18. Какое из утвердений является верным:
- а) повышение температуры не влияет на электропроводность собственного полупроводника; б) чем выше температура, тем ниже электропроводность собственного полупроводника; в) чем выше температура, тем выше электропроводность собственного полупроводника.
- 19. Цель легирования полупроводников:
- а) регулирование электропроводности; б) уменьшение ширины запрещенной зоны; в) увеличение теплопроводности; г) уменьшение твердости.
- 20. Основными носителями заряда в полупроводниках п-типа являются:
- а) нейтроны; б) электроны; в) протоны; г) дырки.
- 21. Для полупроводниковых материалов характерно значение удельного сопротивления:
- a) ρ <10-10 Om·m; б) ρ =10 -5, 10 8 Om·m; в) ρ >105 Om·m; г) ρ =10 -2, 10 4 Om·m.

- 1. Какое из утверждений является верным:
- а) повышение температуры приводит к повышению подвижности носителей заряда примесного полупроводника; б) повышение температуры приводит к уменьшению подвижности носителей заряда примесного полупроводника; в) повышение температуры не влияет на подвижность носителей заряда примесного полупроводника.
- 2. К люминисценции способны:
- а) все полупроводники; б) полупроводники с малой шириной запрещенной зоны; в) полупроводники с большой шириной запрещенной зоны.
- 3. Изменение удельного сопротивления полупроводника под действием электромагнитного излучения называется:
- а) эффектом Холла; б) эффектом Ганна; в) фоторезистивным эффектом.

- 4. Возникновение разности потенциалов на боковых гранях полупроводниковой пластины, через которую проходит электрический ток, при ее помещении в электромагнитное поле, называется:
- а) эффектом Холла; б) эффектом Ганна; в) фоторезистивным эффектом.
- 5. Возбуждение высокочастотных колебаний электрического тока при воздействии на полупроводник постоянного электрического поля высокой напряженности, называется:
- а) эффектом Холла; б) эффектом Ганна; в) фоторезистивным эффектом.
- 6. Основные полупроводниковые материалы электронных средств относятся к группе:
- а) органических аморфных веществ; б) неорганических аморфных веществ; в) неорганических кристаллических веществ; г) органических кристаллических веществ.
- 7. Какие из перечисленных электронных приборов могут быть изготовлены на основе кремния:
- а) инжекционные лазеры; б) биполярные транзисторы; в) тензодатчики; г) импульсные и выпрямительные диоды.
- 8. Какие из перечисленных полупроводников являются промышленными люминофорами:
- а) кремний; б) германий; в) сульфид цинка; г) сульфид кадмия.
- 9. При облучении полупроводника носители заряда генерируют парами «электрон-дырка»:
- а) верно; б) неверно; в) верно только для примесных полупроводников.
- 10. Основными параметрами полупроводниковых материалов являются:
- а) удельная объемная электропроводность, температурный коэффициент линейного расширения, предел упругости; б) ширина запрещенной зоны, концентрация собственных носителей заряда, подвижность носителей заряда при нормальной температуре; в) диэлектрическая проницаемость, удельное сопротивление, тангенс угла диэлектрических потерь; г) магнитная проницаемость, коэрцитивная сила, удельное сопротивление.
- 11. Процесс, состоящий в ограниченном смещении или ориентации связанных зарядов в диэлектрике при воздействии на него электрического поля, называется:
- а) деформацией; б) кристаллизацией; в) поляризацией; г) пробоем.
- 12. Основное различие между термопластичными и термореактивными полимерами состоит в:
- а) характере поведения в цикле нагрев-охлаждение; б) значении удельного сопротивления; в) технологической себестоимости.
- 13. Диэлектрическими параметрами материалов являются:
- a) e0; б) tgd; в) m0; г) e.
- 14. Если температура окружающей среды превышает сегнетоэлектрическую точки Кюри данного диэлектрика, то в нем происходят следующие процессы:
- а) исчезает пьезоэффект; б) перестают существовать электрические домены; в) резко падает теплопроводность; г) материал разрушается.
- 15. Стеклотекстолит это:

- а) полимерный материал; б) композиционный материал; в) керамический материал; г) пропиточный материал.
- 16. Керамические материалы получают:
- а) путем вытягивания из расплава; б) путем свободного охлаждения расплава; в) путем ускоренного охлаждения расплава; г) путем формования и термообработки.
- 17. Электропроводность твердых диэлектриков при постоянном напряжении определяется:
- а) током сквозной проводимости; б) током адсорбции; в) током смещения; г) электропроводность диэлектриков всегда равна нулю.
- 18. Максимальное значение диэлектрической проницаемости характерно:
- а) для газообразных диэлектриков; б) для жидких диэлектриков; в) для твердых диэлектриков; г) не зависит от агрегатного состояния.
- 19. Какие из факторов приводят к увеличению электропроводности диэлектриков:
- а) наличие загрязнений; б) понижение температуры; в) повышение влажности;
- г) длительная эксплуатация.
- 20. Какое из утверждений является верным:
- а) диэлектрические потери проявляются только при постоянном напряжении; б) диэлектрические потери проявляются только при переменном напряжении; в) диэлектрические потери проявляются и при постоянном, и при переменном напряжении.

- 1. Диэлектрические объекты, изготовленные из одного материала, но различные по толщине, обладают различной диэлектрической прочностью:
- а) верно; б) неверно; в) верно только для отдельных материалов.
- 2. Пьезоэлектриками называются диэлектрические материалы, обладающие способностью:
- а) поляризоваться под действием механических нагружений; б) изменять спонтанную поляризацию при изменении температуры окружающей среды; в) создавать в окружающем пространстве постоянное электрическое поле.
- 3. Какие из параметров диэлектрических материалов, использующихся для получения изоляции, должны быть максимальны:
- а) удельное сопротивление; б) диэлектрическая проницаемость; в) термостабильность; г) температурный коэффициент линейного расширения.
- 4. Какая из групп активных диэлектриков обладают способностью создавать в окружающем пространстве постоянное электрическое поле:
- а) сегнетоэлектрики; б) пьезоэлектрики; в) пироэлектрики; г) электреты.
- 5. Пироэлектриками называются диэлектрические материалы, обладающие способностью:
- а) поляризоваться под действием механических нагружений; б) изменять спонтанную поляризацию при изменении температуры окружающей среды; в)

создавать в окружающем пространстве постоянное электрическое поле.

- 6. Ферромагнетиками являются следующие металлы:
- a) Al, Cu, Cr; δ) Au, Ag, Pt; в) W, Mo, Re; Γ) Fe, Ni, Co.
- 7. Если атомные магнитные моменты вещества ориентированы относительно друг друга параллельно и сонаправленно с направлением внешнего поля, то оно является:
- а) парамагнетиком; б) диамагентиком; в) ферромагнетиком; г) ферримагнетиком.
- 8. Магнитомягкие материалы используются для изготовления:
- а) магнитопроводов; б) постоянных магнитов; в) конструкционных деталей; г) радиаторов.
- 9. Наилучшими частотными характеристиками из ферромагнитных материалов обладают:
- а) электротехнические стали; б) пермаллои; в) ферриты; г) альсиферы.
- 10. Магнитострикция это процесс изменения магнитного состояния ферромагнетика, сопровождающийся изменением:
- а) теплопроводности; б) электропроводности; в) линейных размеров; г) прочности.
- 11. Магнитный гистерезис обусловлен:
- а) задержками в смещении доменных границ, вызываемыми искажениями кристаллической решетки; б) возникновением асимметрии оптических свойств вещества под действием магнитного поля; в) наличием областей спонтанной намагниченности.
- 12. Какие из утверждений являются верными:
- а) полный магнитный момент атома равен векторной сумме магнитных моментов электронной оболочки и ядра; б) магнитный момент атома создается в основном спиновыми магнитными моментами протонов и нейтронов; в) магнитный момент электронной оболочки равен векторной сумме спинового и орбитального магнитных моментов электронов.
- 13. Относительная магнитная проницаемость представляет собой:
- а) величину, показывающую, во сколько раз магниная индукция в данной среде больше, чем в вакууме; б) физическую константу $4\pi \cdot 10$ -7 Гн/м; в) отношение абсолютной магнитной проницаемости к магнитной постоянной.
- 14. Магнитная точка Кюри это значение температуры, при которой:
- а) домены разрушаются и спонтанная намагниченность исчезает; б) магнитная проницаемость имеет максимальное значение;в) атомные магнитные моменты становятся равными нулю.
- 15. Что называют коэрцитивной силой магнитного материала:
- а) обратно направленную напряженность магнитного поля, которая необходима, чтобы уменьшить индукцию до нуля; б) напряженность внешнего поля соответствующую обратимому смещению доменных границ; в) напряженность магнитного поля, соответствующую максимальной магнитной энергии.
- 16. Какие из утверждений являются верными:
- а) ферриты обладают большим удельным сопротивлением; б) ферриты

обладают большим значением индукции насыщения; в) ферриты обладают малыми потерями на вихревые токи; г) ферриты могут использоваться для работы в СВЧ диапазоне.

- 17. Магнитомягкие материалы характеризуются:
- а) способностью намагничиваться до насыщения в слабых магнитных полях; б) малыми магнитными потерями; в) большим значением коэрцитивной силы.
- 18. Магнитотвердые материалы характеризуются:
- а) большим значением удельной магнитной энергии; б) высокой точкой Кюри;
- в) большим значением коэрцитивной силы и остаточной индукции.
- 19. Какие группы материалов могут использоваться в качестве конструкционных материалов ЭС:
- а) гетинакс и текстолит; б) сталь и алюминий; в) хромель и копель; г) фосфид индия и сульфид цинка.
- 20. Какие механические свойства конструкционных материалов ЭС должны быть максимальны:
- а) прочность; б) жесткость; в) хрупкость; г) пластичность.