Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Гнатюк Сергей Иванович Должность: Первый проректор

Министерство сельского хозяйства Российской Федерации

Дата подписания: 15.10 2025 11:48:20 ФЕЛЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ Уникальный программный ключ.

5ede28fe5b714e680817c5c132d4ba793a6b442УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
«ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ
ИМЕНИ К.Е. ВОРОШИЛОВА»

«Утверждаю» Декан инженерного факультета Фесенко А. В. _____ «16» апреля 2025 г.

РАБОЧАЯ ПРОГРАММА

учебной дисциплине «Теплотехника» для направления подготовки 35.03.06 Агроинженерия профиль Технические системы в агробизнесе

 Γ од начала подготовки — 2025

Квалификация выпускника – бакалавр

Рабочая программа составлена с учетом требований:

- порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры, утвержденного приказом Министерства науки и высшего образования Российской Федерации от 06.04.2021 № 245;
- федерального государственного образовательного стандарта высшего образования по направлению подготовки 35.03.06 Агроинженерия, утвержденного приказом Министерства образования и науки Российской Федерации от 23.08.2017 № 813.

Преподаватели, подготовившие рабочую программу:	
старший преподаватель	С.В. Рыжий
Рабочая программа рассмотрена на заседании кас (протокол № 9 от 14.04.2025 г.).	федры «Тракторы и автомобили»
Заведующий кафедрой	А.Н. Брюховецкий
Рабочая программа рекомендована к использованию комиссией инженерного факультета (протокол № 8 от	
Председатель методической комиссии	А.В. Шовкопляс
Руководитель основной профессиональной	
образовательной программы	В.И. Шаповалов

1. Предмет. Цели и задачи дисциплины, её место в структуре образовательной программы

Теплотехника общетехническая дисциплина, изучающая методы получения и использования теплоты, а также устройство и принцип действия тепловых машин и аппаратов.

Предметом дисциплины являются фундаментальные законы природы о превращениях энергии в различных процессах и повышение эффективности работы тепловых двигателей, в которых используются эти процессы. Вопросы, рассматриваемые в курсе, являются основой для расчёта и проектирования двигателей внутреннего сгорания и холодильных установок различного назначения.

Целью дисциплины является овладение теоретическими знаниями и практическими навыками по рациональному использованию теплоты, эффективному применению оборудования, использованию вторичных энергоресурсов, защите окружающей среды.

Основные задачи изучения дисциплины:

- научить студентов понимать процессы преобразования энергии, уметь оценивать степень термодинамического совершенства тепловых и холодильных установок;
- привить навыки по проведению инженерных расчетов термодинамических процессов и процессов теплообмена.

Место дисциплины в структуре образовательной программы.

Дисциплина «Теплотехника» относится к дисциплинам обязательной части (Б1.О.26) основой профессиональной образовательной программы высшего образования (далее – ОПОП ВО).

Дисциплина читается в 4 семестре, основывается на базе дисциплин: «Физика», «Химия», «Высшая математика».

Предшествует дисциплине: «Гидравлика».

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной

программы

программы				
Коды	Формулировка	Индикаторы достижения	Планируемые	
компе-	компетенции	компетенции	результаты обучения	
тенций			по дисциплине	
ОПК-1	Способен решать	ОПК-1.2. Демонстрирует и	Знать: основы	
	типовые задачи	использует знания	технической	
	профессиональной	основных законов	термодинамики	
	деятельности на	естественно-научных и	газовых смесей,	
	основе знаний	общепрофессиональных	термодинамические	
	основных законов	дисциплин для решения	процессы, основы	
	математических и	типовых задач в области	теории теплообмена	
	естественных наук с	агроинженерии	Уметь: производить	
	применением		тепловые расчеты,	
	информационно-		эффективно	
	коммуникационных		использовать	
	технологий		энергосберегающие	
			технологии в области	
			сельского хозяйства	
			Иметь навыки:	
			инженерными	
			методами расчета	
			тепловых процессов	

3. Объём дисциплины и виды учебной работы

or obem gnegmentimes is single y reduction particles.				
	Очная форма обучения		Заочная форма обучения	Очно-заочная форма обучени
Виды работ	всего	объём ча- сов	всего часов	всего часов
	зач.ед./	6 семестр	6 семестр	
Общая трудоёмкость дисциплины	4/144	4/144	4/144	
Аудиторная работа:	48	48	14	
Лекции	20	20	6	
Практические занятия	-	-	-	
Лабораторные работы	28	28	8	
Другие виды аудиторных занятий	-	-	-	
Предэкзаменационные консультации	-	-	-	
Самостоятельная работа обучающихся, час	96	96	130	
Вид промежуточной аттестации (зачёт, экзамен)	экзамен	экзамен	экзамен	

4. Содержание дисциплины

4.1. Разделы дисциплины и виды занятий (тематический план).

	4.1. 1 азделы дисциплины и виды занятии	TCMATHT	CCKHH III	1411 <i>)</i> •	1	
№ п/п	Раздел дисциплины	Л	ПЗ	ЛР	CPC	
11/11	Очная форма обучения					
	Раздел 1. Техническая термодинамика 12 -				64	
1.	Тема 1. Введение в дисциплину	1	-	14 -	2	
2.	Тема 2. Теплоемкость смеси газов	2	-	6	10	
3.	Тема 3. Первый закон термодинамики	2	-	-	10	
4	Тема 4. Содержание второго закона	1			0	
4.	термодинамики	1	-	-	8	
_	Тема 5. Исследование термодинамических	2			10	
5.	процессов	2	-	-	10	
6.	Тема 6. Идеальные циклы поршневых ДВС	2	-	-	10	
7.	Тема 7. Влажный воздух	1	-	8	7	
8.	Тема 8. Водяной пар	1	-	-	7	
	Раздел 2. Теория теплообмена	8	-	14	32	
9.	Тема 9. Основы теории теплопроводности	2	-	6	8	
10.	Тема 10. Конвективный теплообмен	2	-	8	8	
11.	Тема 11. Теплопередача. Теплообмен излучением	2	-	-	8	
	Тема 12. Коэффициент теплоотдачи. Основы	2			0	
12.	теории подобия		-	-	8	
	Всего	20	-	28	96	
	Заочная форма обуче	- RNH	•	•	•	
	Раздел 1. Техническая термодинамика	5	-	4	90	
1.	Тема 1. Введение в дисциплину	0,5	-	-	5	
2.	Тема 2. Теплоемкость смеси газов	0,5	-	2	10	
3.	Тема 3. Первый закон термодинамики	0,5	-	-	10	
4	Тема 4. Содержание второго закона	0.5			1.5	
4.	термодинамики	0,5	-	-	15	
5.	Тема 5. Исследование термодинамических	1			15	
J.	процессов и второй закон термодинамики	1	1 -	1	_	13
6.	Тема 6. Идеальные циклы поршневых ДВС	-	-	-	15	
7.	Тема 7. Влажный воздух	1	-	2	10	
8.	Тема 8. Водяной пар	1	_	-	10	
	Раздел 2. Теория теплообмена	1	-	4	40	
9.	Тема 9. Основы теории теплопроводности	0,5	-	2	10	
10.	Тема 10. Конвективный теплообмен	0,5	-	2	10	
11.	Тема 11. Теплопередача. Теплообмен излучением	-	-	-	10	
12	Тема 12. Коэффициент теплоотдачи. Основы				10	
12.	теории подобия	_	_	_	10	
	Всего	6	-	8	130	
	DCCI U	0	-	0	130	

4.2. Содержание разделов учебной дисциплины.

Раздел I. Техническая термодинамика Тема 1. Введение в дисциплину Техническая термодинамика изучает закономерности тепловой и механической энергии. Она является теоретической основой расчета и проектирования тепловых двигателей и холодильных установок.

Термодинамическая система - совокупность материальных тел, находящихся в механическом и тепловом взаимодействии друг с другом и окружающими телами.

Объектом изучения в термодинамике служит вещество, называемое рабочим телом (пар, газ, продукты сгорания и т.п.).

Физические величины, определяющие состояние термодинамической системы, называются параметрами состояния.

Тема 2. Теплоемкость смеси газов

Смесь идеальных газов.

Идеальным газом называют воображаемый газ, у которого отсутствуют силы сцепления между молекулами, а сами молекулы представляют собой материальные точки, не имеющие объема.

Реальные газы, у которых действуют силы сцепления между молекулами, и этими силами и самим объемом молекул пренебречь нельзя.

Особенность, характеризующая газовые смеси выражается законом Дальтона, согласно которому отдельный газ в смеси следует своему уравнению состояния, как если бы не было других её составных частей (закон независимости состояния), т.е. каждый газ в смеси производит такое частичное (парциальное) давление, какое имел бы данный газ, занимая весь объем, занимаемый смесью газа.

Удельная теплоемкость — это то количество тепла, которое надо сообщить или отнять от единицы количества вещества в данном процессе изменения его состояния, чтобы изменить температуру на 1 °C или К. Различают массовую, объемную и мольную теплоемкости.

Так как теплоемкость газа переменная величина, зависящая от температуры, то при нагревании на каждый градус расходуется разное количество тепла. Средняя теплоемкость в пределах температур t_1 и t_2 .

Чем меньше разность t_2 — t_1 , тем больше приближается значение средней теплоемкости к значению истинной теплоемкости, т.е., когда $(t_2$ - $t_1) \rightarrow 1$.

Значения киломольных теплоемкостей при P и V = const, если пренебречь их зависимостью от T будут равны числу поступательных и вращательных степеней свободы молекул данного газа.

Тема 3. Первый закон термодинамики.

Первый закон термодинамики является выражением общего закона сохранения и превращение энергии, т.е. первый закон термодинамики аналитически выражает закон сохранения материи и движения.

Первый закон термодинамики выражается: во всех случаях, когда исчезает некоторое количество тепла, возникает вполне определенное количество механической энергии, и, наоборот, при совершении какой-либо работы появляется вполне определенное количество тепла.

или: невозможно создать машину, производящую работу без того, чтобы эквивалентное количество энергии другого вида не исчезало.

То есть, невозможно построить двигатель, который вырабатывал бы энергию, не потребляя какой-либо другой энергии.

Вечный двигатель невозможен.

Если к 1 кг газа в цилиндре с подвижным поршнем подвести q единиц тепла, то тепло расходуется на изменение внутренней энергии Δu и совершение внешней работы ℓ .

Тепло сообщаемое движущемуся телу (газу, пару) идет на увеличение энтальпии (теплосодержания) и внешней кинетической энергии, т.е. на увеличение скорости потока.

Внутренняя энергия и её свойства.

Каждая молекула обладает кинетической энергией поступательного и вращательного движения. Атомы, образующие молекулу, совершают колебательные движения – это энергия внутренних колебаний.

Реальный газ обладает и потенциальной энергией, зависящей от сцепления между молекулами. Сумма всех видов энергии определяет внутреннюю тепловую энергию газа – внутреннюю энергию газа.

Все виды энергии, кроме потенциальной, зависят от температуры, а потенциальная — от расстояния между молекулами, т.е. под каким давлением при данной температуре нахолится газ.

Энтальпия газа і - введена в термодинамику для упрощения рассмотрения процессов в тепловых двигателях.

Энтальпия (теплосодержание) является суммой внутренней энергии и работы проталкивания (произведение давления на удельный объем), т.е., «i» является параметром состояния газа и рассматривается как разность энтальпий в каком-либо процессе.

Тема 4. Исследование термодинамических процессов и второй закон термодинамики

Термодинамические процессы:

Изохорный процесс при V = const.

Изобарный процесс при P = const.

Изотермический процесс при T= const.

Адиабатный – процесс, протекающий без теплообмена тела с окружающей средой.

 Π олитропный - PVn = const.

Первые четыре процесса являются частными случаями политропного процесса, в котором нет ярко выраженных характерных особенностей и необходимых условий протекания.

Тема 5. Содержание второго закона термодинамики и его формулировки

Второй закон термодинамики теплота не может переходить от холодного тела к более нагретому сама собой даровым процессом без компенсации.

Осуществление вечного двигателя 2-го рода невозможно.

Энтропия газов (превращение газов) выражение под интегралом представляет собой полный дифференциал некоторой функции (функции состояния тела), которую Клаузиус назвал энтропией (S).

Тема 6. Идеальные циклы поршневых ДВС

Одним из первых предсказал возможность создания ДВС – Сади Карно. В 1897 году Дизель создал свой ДВС. В 1893 русский инженер Манин построил ДВС, работающий на сырой нефти.

При рассмотрении идеальных циклов ДВС за рабочее тело принимают идеальный газ, процесс — замкнутым и обратимым, поэтому эти циклы имеют η_t max, т. к. не учитываются:

- а) потери трения, теплопроводность, излучение;
- б) изменение химического состава рабочего тела;
- в) после совершения каждого цикла рабочее тело не возвращается в первоначальное состояние, а заменяется новым.

Во всех случаях будем принимать 1 кг идеального газа, а процесс горения топлива, как процесс подвода тепла.

Циклы со смешанным подводом тепла нашли широкое применение.

Тема 7. Влажный воздух

Воздух всегда содержит пар, поэтому он называется влажным и подчиняется с достаточной степенью точности законам смеси идеальных газов.

Влагосодержание — отношение массы паров воды, содержащихся во влажном воздухе к массе сухого воздуха.

Влажный воздух – это смесь идеальных газов, подчиняющихся закону Дальтона.

Абсолютная влажность – отношение массы водяного пара к объему влажного воздуха.

Отношение плотности пара при заданном давлении к максимально возможной плотности его при том же давлении – называется относительной влажностью.

Если температура воздуха больше температуры кипения воды при рсм., это значит, что пар влажного воздуха в перегретом состоянии (ненасыщенном) рн.п. < ртах и, если такой воздух охлаждать при той же рсм., то он в некоторый момент станет насыщенным. Температура при которой это произойдет, называется температурой «точки росы» (tp). В этот момент ϕ будет = 100%.

Тема 8. Водяной пар

Процесс кипения проходит лишь при определенной температуре для данного давления.

<u>1-я стадия</u> – жидкость нагревается от 0° С до T кипения, V – увеличивается.

<u>2-я стадия</u> – кипящая жидкость переходит в пар, который называется насыщенным.

Смесь жидкости и пара называется насыщенным влажным паром. Как только выкипит последняя капля воды, пар становится сухим насыщенным.

Влажный насыщенный пар характеризуется степенью сухости «х». Это отношение $M_{\text{сух.нас.пара}}$ к общей массе влажного насыщенного пара.

Если к насыщенному пару подводить тепло он становится перегретым. Перегрев пара является 3-й стадией процесса парообразования.

Раздел 2. Теория теплообмена

Тема 9. Основы теории теплопроводность

Теория теплопередачи представляет собой науку, излагающую законы распространения и передачи тепла между телами. Различают три вида теплообмена.

Теплопроводность (кондукция).

Конвекция.

Излучение.

Теплопроводность – явление переноса тепла путем соприкосновения между частицами тела.

Конвекция – явление переноса тепла путем перемещения и перемешивания между собой более и менее нагретых частиц жидкости (газа).

Излучение – явление переноса энергии в виде электромагнитных волн между излучающими поверхностями.

Тема 10. Конвективный теплообмен.

Теплообмен между жидкостью и стенкой называется конвективным теплообменом (теплопередачей).

Виды движения – свободное и вынужденное.

Свободное – естественная конвекция, вызываемая подъемной силой обусловленной разностью холодных и нагретых частиц жидкости.

Вынужденное – вынужденная конвекция, вызываемая работой насосов, вентиляторов и т.п.

Режим движения - бывает ламинарный и турбулентный.

Ламинарное движение - происходит в форме несмешивающихся струй и профиль скоростей имеет вид правильной параболы.

Турбулентное движение –характерно непостоянством скорости движения и профиль скоростей будет иметь вид усеченной параболы.

Распределение скоростей струй жидкости обусловливается вязкостью жидкости. Вязкость бывает: динамическая, кинематическая и условная.

Динамическая вязкость — сила сопротивления 1H смещению двух слоев жидкости площадью 1 м² находящихся на расстоянии 1 м и перемещающихся со скоростью 1 м/сек.

Кинематическая вязкость - отношение динамической вязкости к плотности жидкости при одной и той же температуре, измеряется стоксами, m^2/cek .

Условная вязкость - показывает, во сколько раз жидкость вязче дистиллированной воды при 20 °C.

Рейнольдс установил, что переход из ламинарного режима в турбулентный определяется безразмерным значением, числом Рейнольдса.

При ламинарном движении перенос тепла по нормали к стенке осуществляется теплопроводностью.

При турбулентном движении перенос тепла теплопроводностью наблюдается в пограничном слое, а внутри – конвекция.

На интенсивность теплопередачи оказывает влияние термическое сопротивление пограничного слоя.

Тема 11. Теплопередача. Теплообмен излучением.

Расчет теплопередачи заключается в определении количества тепла, которое передается в единицу времени между теплоносителями через стенку, разделяющую их.

Лучистая энергия возникает в результате сложных молекулярных и внутримолекулярных процессов, поэтому количество лучистой энергии зависит от физических свойств и температуры излучаемого тела.

Носителями излучения являются электромагнитные волны, распространяемые в вакууме со скоростью света.

Процесс превращения энергии излучения во внутреннюю энергию поглощающего тела называется поглощением.

Тело, которое характеризуется наибольшей энергией излучения для всех частот по сравнению с собственным излучением других тел, называется абсолютно черным.

Излучение в узком интервале частот называется монохроматическим.

Излучение в интервале всего спектра частот называется интегральным излучением.

Тема 12. Коэффициент теплоотдачи. Основы теории подобия.

Дифференциальное уравнение теплоотдачи выводится на основе анализа явления теплообмена в месте соприкосновения теплоносителя со стенкой.

Основы теории подобия физических явлений

Конвективный теплообмен описывается системой дифференциальных уравнений, включающих в себя уравнения теплообмена, теплопроводности, движения и сплошности.

Совокупность дифференциальных уравнений очень сложна в решении, поэтому в практике прибегают к теории подобия, т.к.: $\lambda = f(\rho, \omega, \alpha, \gamma, \mu)$.

Теория подобия — это учение о подобных явлениях и применяется как средство обобщения результатов физического и математического эксперимента и как теоретическая основа для моделирования технических устройств.

Поэтому введены понятия одноименных величин, сходственных точек и сходственных моментов времени.

Одноименными называются величины, имеющие одинаковый физический смысл и одинаковую размерность.

Сходственными называются такие точки системы, координаты которых удовлетворяют геометрическому подобию.

Подобными называются явления, протекающие в геометрически подобных системах, если у них во всех сходственных точках в сходные моменты времени отношения одноименных величин есть постоянные числа, называемые константами подобия.

Основу теории подобия составляют три теоремы:

1. У подобных явлений <u>одноименные числа одинаковы</u>, т.е. результаты одного опыта или расчета позволяют судить обо всех явлениях подобных исследуемому.

- 2. Если физическое явление описывается системой дифференциальных уравнений, то числа подобия могут быть получены из дифференциальных уравнений, описывающих последнее явление.
- 3. Подобны же явления условия, однозначности которых подобны или критерии, подобия которых одинаковы.

4.3. Перечень тем лекций.

	4.3. Перечень тем лекции.				
		Объём	и, часов		
No	Тема лекции	форма	обучения		
п/п		очная	заочная		
	Раздел 1. Техническая термодинамика	12	5		
1.	Тема 1. Введение в дисциплину	1			
2.	Тема 2. Теплоемкость смеси газов	2			
3.	Тема 3. Первый закон термодинамики	2	2		
4.	Тема 4. Содержание второго закона термодинамики	1			
5.	Тема 5. Исследование термодинамических процессов и второй закон термодинамики	2	1		
6.	Тема 6. Идеальные циклы поршневых ДВС	2	-		
7.	Тема 7. Влажный воздух	1	1		
8.	Тема 8. Водяной пар	1	1		
	Раздел 2. Теория теплообмена	8	1		
9.	Тема 9. Основы теории теплопроводности	2			
10.	Тема 10. Конвективный теплообмен	2	1		
11.	Тема 11. Теплопередача. Теплообмен излучением	2	-		
12.	Тема 12. Коэффициент теплоотдачи. Основы теортеории подобия	2	-		
	Всего	20	6		

4.4. Перечень тем практических занятий (семинаров) Не предусмотрено

4.5. Перечень тем лабораторных работ.

	тере тень тем лиоориторных рисст.	07 "		
		Объём, часов		
No	Тема лабораторной работы	форма обучения		
п/п		очная	заочная	
	Раздел 1. Техническая термодинамика	14	4	
1.	Тема 1. Определение теплоемкости воздуха	6	2	
2.	Тема 2. Исследование процесса сушки влажным воздухом	8	2	

	Раздел 2. Теория теплообмена	14	4
3.	Тема 4. Определение коэффициента теплопроводности материала	6	2
4.	Тема 5. Экспериментальное исследование конвективного теплообмена при свободном движении воздуха	8	2
	Всего	28	8

4.6. Виды самостоятельной работы студентов и перечень учебно-методического обеспечения для самостоятельной работы обучающихся.

4.6.1. Подготовка к аудиторным занятиям

Учебная дисциплина «Теплотехника» является теоретической, дает студентам комплексное представление о технической термодинамике, а также о теории теплообмена. Аудиторные занятия проводятся в виде лабораторных работ — это одна из важнейших форм обучения студентов. Проводится с целью закрепления и углубления знаний по теплотехнике. В ходе лекций раскрываются основные вопросы в рамках рассматриваемой темы, делаются акценты на наиболее сложные и интересные положения изучаемого материала, которые должны быть приняты студентами во внимание. Материалы лекций являются основой для подготовки студента к лабораторным работам. Лабораторные работы могут проводиться в форме дискуссий, круглого стола.

При подготовке к лабораторным работам студент должен:

- изучить рекомендуемую литературу;
- просмотреть самостоятельно дополнительную литературу по изучаемой теме;
- без затруднения отвечать на вопросы, предлагаемые к данной теме.

Основной целью лабораторных работ является контроль за степенью усвоения пройдённого материала, ходом выполнения студентами самостоятельной работы и рассмотрение наиболее сложных и спорных вопросов в рамках пройденной темы.

4.6.2. Перечень тем курсовых работ (проектов). Не предусмотрено

4.6.3. Перечень тем рефератов, расчетно-графических работ. Не предусмотрено

4.6.4. Перечень тем и учебно-методического обеспечения для самостоятельной работы обучающихся.

		V	Обт	ьём, ч
№ п/п	Тема самостоятельной работы	Учебно-методическое обеспечение	форма	обучения
		обеспечение	очная	заочная
	Раздел 1. Техн	ическая термодинамика		
		Колесниченко В.А. Лекции по		
		теплотехнике. – Луганск: ООО		
		«Виртуальная реальность»,	64	90
		2008. – 168 с. [электронный		
		pecypc]		
1.	Введение в дисциплину	стр.8-13	2	5
2.	Теплоемкость смеси газов	стр. 14-29	10	10
3.	Первый закон термодинамики	стр.30-39	10	10
4.	Содержание второго закона	стр. 50-60	8	15

	термодинамики			
5.	Исследование термодинамических процессов	стр.40-50	10	15
6.	Идеальные циклы поршневых ДВС	стр. 63-70	10	15
7.	Влажный воздух	стр. 71-75	7	10
8.	Водяной пар	стр. 84-89	7	10
	Раздел 2.	Теория теплообмена		
		Колесниченко В.А. Лекции по теплотехнике. – Луганск: ООО «Виртуальная реальность», 2008. – 168 с. [электронный ресурс]	32	40
9.	Основы теории теплопроводности	стр.127-138	8	10
10.	Конвективный теплообмен	стр.139-142	8	10
11.	Теплопередача. Теплообмен излучением	стр.150-163	8	10
12.	Коэффициент теплоотдачи. Основы теории подобия	стр.142-149	8	10
	Всего		96	130

4.6.5. Другие виды самостоятельной работы студентов. Не предусмотрено.

4.7. Перечень тем и видов занятий, проводимых в интерактивной форме

		ент и видов запитин, проводимент в инте		
№ п/п	Форма занятия	Тема занятия	Интерактивный метод	Объем, ч
1.	Лекция	Введение в дисциплину	Дискуссии	1
2.	Лекция	Смесь идеальных газов	Дискуссии	1
3.	Лекция	Введение в дисциплину	Дискуссии, дебаты	2
4.	Лекция	Теплоемкость смеси газов	Мастер класс	2
5.	Лекция	Первый закон термодинамики	Дискуссии, дебаты	1
6.	Лекция	Исследование термодинамических процессов и второй закон термодинамики	Дискуссии	1
7.	Лекция	Содержание второго закона термодинамики	Дискуссии, дебаты	1
8.	Лекция	Идеальные циклы поршневых ДВС	Мастер класс	2
9.	Лекция	Основы теории теплопроводности	Дискуссии	1
10.	Лекция	Конвективный теплообмен	Мастер класс	1

11.	Лекция	Теплопередача. Теплообмен излучением	Дискуссии, дебаты	2
12.	Лекция	Коэффициент теплоотдачи. Основы теории подобия	Дискуссии, дебаты	2
13.	Лабораторная работа	Определение теплоемкости воздуха	Анализ	2
14.	Лабораторная работа	Исследование процесса сушки влажным воздухом	Анализ	4
15.	Лабораторная работа	Экспериментальное изучение процесса адиабатного истечения воздуха через	Анализ	2
16.	Лабораторная работа	Определение коэффициента теплопроводности материала	Анализ	2
17.	Лабораторная работа	Экспериментальное исследование конвективного теплообмена при	Анализ	2

5. Фонд оценочных средств для проведения промежуточной аттестации

Полное описание фонда оценочных средств текущей и промежуточной аттестации обучающихся с перечнем компетенций, описанием показателей и критериев оценивания компетенций, шкал оценивания, типовые контрольные задания и методические материалы представлены в приложении к настоящей программе.

6. Учебно-методическое обеспечение дисциплины.

6.1. Рекомендуемая литература.

6.1.1. Основная литература.

	олл. Основная литература.	
№ п/п	Автор, название, место издания, изд-во, год издания, количество страниц	Кол-во экз. в библ.
	Лариков Н.Н. Теплотехника: Учеб. для вузов. – 3-е изд., перераб. и доп. – М.: Стройиздат, 1985. – 432 с., ил.	43
,	Колесниченко В.А. Лекции по теплотехнике. – Луганск: ООО «Виртуальная реальность», 2008. – 168 с.	50
3.	Круглов Г. А. Теплотехника / Г. А. Круглов, Р. И. Булгакова, Е. С. Круглова. — 4-е изд., стер. — Санкт-Петербург: Лань, 2022. — 208 с.	50
4.	Леденева Г. А. Практикум по теплотехнике: учебное пособие / Г. А. Леденева, Д. В. Гурьянов. — Воронеж: Мичуринский ГАУ, 2008. — 65 с. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/47193	электронный ресурс

6.1.2. Дополнительная литература

№ п/п	Автор, название, место издания, изд-во, год издания, количество страниц
	Геплотехника: Учебное пособие / В.А. Кудинов, Э.М. Карташов, Е.В. Стефанюк
1.	М.: КУРС: НИЦ ИНФРА-М, 2015 424 с [Электронный ресурс].
	URL: http://znanium.com/bookread2.php?book=486472.
	Видин Ю. В. Техническая термодинамика и тепломассообмен: учебное пособие /
2.	Ю. В. Видин, В. С. Злобин. — Красноярск: СФУ, 2020. — 332 с. — ISBN 978-5-
	7638-4212-8. — Текст: электронный // Лань: электронно-библиотечная система. —

№ п/п	Автор, название, место издания, изд-во, год издания, количество страниц
	[Электронный ресурс]. URL: https://e.lanbook.com/book/181569
3.	Гермодинамические и теплообменные процессы технических систем. Теория, задачи, упражнения, тесты / А. П. Уханов, Д. А. Уханов, О. С. Володько, А. П. Быченин. — Санкт-Петербург: Лань, 2023. — 260 с. — ISBN 978-5-507-46982-6. — Гекст: электронный // Лань: электронно-библиотечная система. — [Электронный ресурс]. URL: https://e.lanbook.com/book/352178

6.1.3. Периодические издания

Периодические издания при изучении дисциплины не предусмотрены.

6.1.4. Методические указания для обучающихся по освоению дисциплины

№ п/п	Автор, название, место издания, изд-во, год издания, количество страниц
	Рыжий С.В., Захаров С.А., Методические указания к лабораторным работам по
1.	«Теплотехнике» студентам дневной и заочной форм обучения по направлению
	подготовки: 35.03.06 –«Агроинженерия» - Луганск: ЛГАУ, 2023 – 39 с.

6.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» (далее - сеть «Интернет»), необходимых для освоения дисциплины

WEITH I C	онет» (далее - сеть «интернет»), необходимых для освоения дисциплины
№ п/п	Название интернет-ресурса, адрес и режим доступа
	Всероссийский институт научной и технической информации [Электронный ресурс]. URL: http://elibrary.ru/defaultx.asp (дата обращения: 20.05.2023).
	Научная электронная библиотека [Электронный ресурс]. Режим доступа: http://www2.viniti.ru (дата обращения: 20.05.2023).
3.	Министерство сельского хозяйства РФ [Электронный ресурс]. URL: http://www.mcx.ru/ (дата обращения: $20.05.2023$).
4.	Научная поисковая система Scirus, предназначенная для поиска научной информации в научных журналах, персональных страницах ученых, сайтов университетов на английском и русском языках. [Электронный ресурс]. URL: http://www.scirus.com/ (дата обращения: 20.05.2023).
5.	Электронно-библиотечная система издательства «Лань» [Электронный ресурс]. Режим доступа: http://elanbook.com/books/ (дата обращения: 20.05.2023).
6.	Электронная библиотека «Наука и техника»: книги, статьи из журналов, биографии. [Электронный ресурс]. Режим доступа: http://n-t.ru/ (дата обращения: 20.05.2023).
,	Науки, научные исследования и современные технологии [Электронный ресурс]. Режим доступа: http://www.nauki-online.ru/ (дата обращения: 20.05.2023).
×	Полнотекстовые электронные библиотеки [Электронный ресурс]. Режим доступа: http://www.aonb.ru/iatp/guide/library.html (дата обращения: 20.05.2023).

6.3. Средства обеспечения освоения дисциплины.

6.3.1. Компьютерные обучающие и контролирующие программы.

№	Вид учебного Наименование программного		Функция пр	ограммного	обеспечения
п/п	занятия	обеспечения	контроль	моделиру ющая	обучающая
1	Лекции	Microsoft Office 2010 Std	-	-	+
2	Лабораторные	Microsoft Office 2010 Std.	+	-	+

6.3.2. Аудио- и видеопособия.

№ п/п	Вид пособия	Наименование пособия
1.	Видеофильм	Термодинамические процессы
2.	Видеофильм	i-d диаграмма влажного воздуха
3.	Видеофильм	i-S диаграмма водяного пара
4.	Видеофильм	Теплообмен

6.3.3. Компьютерные презентации учебных курсов. Не предусмотрено

7. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

	осуществления образовательного процесса по дисциплине						
	Наименование оборудован-						
$N_{\underline{0}}$	ных учебных кабинетов,	Перечень основного оборудования, приборов и					
Π/Π	объектов для проведения	материалов					
	занятий						
		- котел КВ-300М;					
	Лекционные аудитории	- теплогенератор ТГ-75;					
1.	инженерный факультет	- градусники для измерения температур °C;					
	лаборатория теплотехники	- U-образный дифманометр;					
	2M-109	- психрометр Ассмана;					
		- счетчик расхода воздуха;					
		- плакаты термодинамических процессов;					
		- плакат конвективного теплообмена;					
		- таблица для определения параметров некоторых					
		идеальных газов;					
		- i-d диаграмма влажного воздуха;					
		- i-S диаграмма водяного пара.					
		Пять стендов для проведения лабораторных работ:					
	Аудитории для проведения	- определение теплоемкости воздуха;					
	лабораторных и практиче-	- исследование процесса сушки влажным воздухом;					
ских занятий - определение коэффициента теплопр 2. инженерный факультет материала;							
					лаборатория теплотехники	- экспериментальное исследование конвективного	
	2M-109	теплообмена при свободном движении воздуха;					
		- экспериментальное изучение процесса адиабатного					
		истечения воздуха через суживающееся сопло					
	Аудитории для групповых и	- таблица для определения параметров некоторых					
	индивидуальных	идеальных газов;					
3.	консультаций инженерный	- психрометр Ассмана;					
	факультет	- градусники для измерения температур °C;					
	лаборатория теплотехники	- i-d диаграмма влажного воздуха;					
-	2M-109	- i-S диаграмма водяного пара.					
	Помещение для хранения и	- таблица для определения параметров некоторых					
	профилактического обслу-	идеальных газов;					
	живания учебного оборудо-	- психрометр Ассмана;					
4.	вания (инженерный	- градусники для измерения температур °C;					
	факультет	- i-d диаграмма влажного воздуха;					
	лаборатория теплотехники	- i-S диаграмма водяного пара.					
	2M-109)						

8. Междисциплинарные связи

Протокол согласования рабочей программы с другими дисциплинами

Наименование дисциплины, Кас с которой проводилось согласование		Кафедра, с которой проводилось согласование	Предложения об из- менениях в рабочей программе. Заключение об итогах согласования	Подпись зав. кафедрой
Математика,	Физика	Кафедра информационных технологий, математики и физики	согласовано	
Хими	Я	Кафедра химии	согласовано	

Лист изменений рабочей программы

Номер изменения	Номер протокола заседания кафедры и дата	Страницы с изменениями	Перечень откорректированных пунктов	Подпись заве- дующего кафедрой

Лист периодических проверок рабочей программы

Должностное лицо, проводившее проверку Ф.И.О., должность,	Дата	Потребность в корректировке	Перечень пунктов, стр., разделов, требующих изменений

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛУГАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ К.Е. ВОРОШИЛОВА»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Теплотехника»

Направление подготовки: 05.03.06 Агроинженерия

Направленность (профиль): Технические системы в агробизнесе

Уровень профессионального образования: бакалавриат

Год начала подготовки: 2025

1. ПЕРЕЧЕНЬ КОМПЕТЕНЦИЙ, СООТНЕСЕННЫХ С ИНДИКАТОРАМИ ДОСТИЖЕНИЯ КОМПЕТЕНЦИЙ, С УКАЗАНИЕМ ЭТАПОВ ИХ ФОРМИРОВАНИЯ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Код контро-	Формулировка	Индикаторы	Этап (уровень)	Планируемые	Наименование	Наименовани	е оценочного
лируемой	контролируемой	достижения	освоения	результаты	модулей и (или)	сред	ства
компе-	компетенции	компетенции	компетенции	обучения	разделов	Текущий	Промежуточная
тенции					дисциплины	контроль	аттестация
ОПК-1	Способен решать типовые задачи профессиональн ой деятельности на основе знаний основных	ОПК-1.2. Демонстрирует и использует знания основных законов естественно- научных и	Первый этап (пороговый уровень)	Знать: основы технической термодинамики газовых смесей, термодинамическ ие процессы, основы теории теплообмена	Раздел 1. Техническая термодинамика Раздел 2. Теория теплообмена	Тесты закрытого типа	Экзамен
	законов математических и естественных наук с применением информационно-коммуникацион ных технологий	общепрофесси ональных дисциплин для решения типовых задач в области агроинженери и	Второй этап (продвинутый уровень)	Уметь: производить тепловые расчеты, эффективно использовать энергосберегающ ие технологии в области сельского хозяйства	Раздел 1. Техническая термодинамика	Тесты открытого типа (вопросы для опроса)	Экзамен
			Третий этап (высокий уровень)	Иметь навыки: инженерными методами расчета тепловых процессов	Раздел 1. Техническая термодинамика Раздел 2. Теория теплообмена	Практические задания	Экзамен

ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ

№ π/ π	Наимено вание оценочно го средства Тест	Краткая характеристика оценочного средства Система стандартизированных заданий, позволяющая измерить уровень	Представлен ие оценочного средства в фонде Тестовые задания	В тесте выполнено 90-100% заданий	Шкала оценивания Оценка «Отлично» (5)
		знаний.		В тесте выполнено более 75-89% заданий В тесте выполнено 60-74% заданий В тесте выполнено менее 60%	Оценка «Хорошо» (4) Оценка «Удовлетвори тельно» (3)
2.	Опрос	Форма работы, которая позволяет оценить кругозор, умение логически построить ответ,	Вопросы к опросу	заданий Продемонстрированы предполагаемые ответы; правильно использован алгоритм обоснований во время рассуждений; есть логика	«Неудовлетвор ительно» (2) Оценка «Отлично» (5)
		умение продемонстрировать монологическую речь и иные коммуникативные навыки. Устный опрос обладает большими возможностями воспитательного воздействия, создавая		рассуждений. Продемонстрированы предполагаемые ответы; есть логика рассуждений, но неточно использован алгоритм обоснований во время рассуждений и не все ответы полные.	Оценка «Хорошо» (4)
		условия для неформального общения.		Продемонстрированы предполагаемые ответы, но неправильно использован алгоритм обоснований во время рассуждений; отсутствует логика рассуждений; ответы не полные.	Оценка «Удовлетвори тельно» (3)
				Ответы не представлены.	Оценка «Неудовлетвор ительно» (2)
3.	Лаборат орные занятия	Направлено на овладение методами и методиками изучаемой дисциплины. Для решения предлагается решить	Лабораторн ым работам	Продемонстрировано свободное владение профессионально-понятийным аппаратом, владение методами и методиками дисциплины. Показаны способности	Оценка «Отлично» (5)

No	Наимено	Краткая	Представлен	Критерии оценивания	Шкала
п/	вание	характеристика	ие		оценивания
П	оценочно	оценочного средства	оценочного		
	го средства		средства в фонде		
	1 1	конкретное задание		самостоятельного мышления,	
		(ситуацию) без		творческой активности.	
		применения математических		Задание выполнено в полном объеме.	
		расчетов.		Продемонстрировано владение	Оценка
		1		профессионально-понятийным	«Xopouo» (4)
				аппаратом, при применении	
				методов и методик дисциплины незначительные неточности,	
				показаны способности	
				самостоятельного мышления,	
				творческой активности.	
				Задание выполнено в полном объеме, но с некоторыми	
				неточностями.	
				Продемонстрировано владение	Оценка
				профессионально-понятийным	«Удовлетвори
				аппаратом на низком уровне; допускаются ошибки при	тельно» (3)
				применении методов и методик	
				дисциплины. Задание	
				выполнено не полностью. Не продемонстрировано	Оценка
				владение профессионально-	«Неудовлетвор
				понятийным аппаратом,	ительно» (2)
				методами и методиками	
				дисциплины. Задание не выполнено.	
4.	Экзамен	Контрольное	Вопросы к	Показано знание теории	Оценка
		мероприятие, которое	экзамену	вопроса, понятийно-	«Отлично» (5)
		проводится по окончании изучения		терминологического аппарата дисциплины; умение	
		дисциплины.		анализировать проблему,	
				содержательно и стилистически	
				грамотно излагать суть	
				вопроса; глубоко понимать материал; владение	
				аналитическим способом	
				изложения вопроса, научных	
				идей; навыками аргументации и анализа фактов, событий,	
				явлений, процессов.	
				Выставляется обучающемуся,	
				полно, подробно и грамотно ответившему на вопросы	
				билета и вопросы	
				экзаменатора.	
				Показано знание основных	Оценка
				теоретических положений вопроса; умение анализировать	«Хорошо» (4)
				явления, факты, действия в	
				рамках вопроса; содержательно	
				и стилистически грамотно излагать суть вопроса, но имеет	
				место недостаточная полнота	
				ответов по излагаемому	
1	i				i de la companya de
				вопросу. Продемонстрировано владение аналитическим	

№ п/ п	Наимено вание оценочно	Краткая характеристика оценочного средства	Представлен ие оценочного	Критерии оценивания	Шкала оценивания
	го средства		средства в фонде		
				способом изложения вопроса и навыками аргументации. Выставляется обучающемуся,	
				полностью ответившему на вопросы	
				экзаменатора, но допустившему при ответах незначительные ошибки, указывающие на наличие несистемности и	
				пробелов в знаниях.	
				Показано знание теории вопроса фрагментарно (неполнота изложения информации; оперирование понятиями на бытовом уровне); умение выделить главное, сформулировать выводы, показать связь в построении ответа не продемонстрировано. Владение аналитическим способом изложения вопроса и владение навыками аргументации не продемонстрировано. Обучающийся допустил существенные ошибки при ответах на вопросы билетов и	Оценка «Удовлетвори тельно» (3)
				вопросы экзаменатора. Знание понятийного аппарата, теории вопроса, не продемонстрировано; умение	Оценка «Неудовлетвор ительно» (2)
				анализировать учебный материал не продемонстрировано; владение	
				аналитическим способом изложения вопроса и владение навыками аргументации не	
				продемонстрировано. Обучающийся не ответил на один или два вопроса билета и	
				дополнительные вопросы экзаменатора.	

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Оценочные средства для проведения текущего контроля

Текущий контроль осуществляется преподавателем дисциплины при проведении занятий в форме тестовых заданий, устного опроса и практических заданий.

- ОПК-1. Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением информационно-коммуникационных технологий.
- ОПК-1.2. Демонстрирует и использует знания основных законов естественнонаучных и общепрофессиональных дисциплин для решения типовых задач в области агроинженерии.

Первый этап (пороговой уровень) – показывает сформированность показателя компетенции «знать»: основы технической термодинамики газовых смесей, термодинамические процессы, основы теории теплообмена

- **1. Как проверить правильность расчета объемных долей смеси...** (выберите один вариант ответа)
- а) произведение долей должно равняться объему смеси
- б) сумма долей должна равняться единице
- в) произведение долей должно равняться единице
- г) сумма долей должна равняться массе смеси
- д) сумма долей должна равняться нулю
- 2. В кДж/кг ·К измеряется... (выберите один вариант ответа)
- а) энтальпия
- б) молярная теплоемкость
- в) массовая теплоемкость
- г) объемная теплоемкость
- д) изменение внутренней энергии
- **3.** Плотность и удельный объём связаны зависимостью... (выберите один вариант ответа)
- a) $\rho \cdot v = R \cdot T$
- δ) ρ·υ = p·V
- B) $\rho \cdot v = 1$
- Γ) $\rho \cdot \upsilon = R_0$
- **4.** Универсальная газовая постоянная для всех газов находящихся в одинаковых условиях равна... (выберите один вариант ответа)
- а) $R_0 = 8315 \, \text{Дж/кг} \cdot \text{К}$
- б) $R_0 = 8313 \, \text{Дж/кг} \cdot \text{К}$
- в) $R_0 = 8329,1 \ \text{Дж/кг} \cdot \text{К}$
- Γ) $R_0 = 8317,3$ Дж/к $\Gamma \cdot K$

5. Температурный градиент, взятый с обратным знаком, называется... (выберите один вариант ответа)

- а) увеличением температуры
- б) падением температуры
- в) исчезновением температуры
- г) прибавлением температуры
- д) накаливанием температуры

Ключи

1.	б
2.	В
3.	В
4.	Д
5.	б

6. Прочитайте текст и установите соответствие.

Техническая термодинамика основывается на термодинамических процессах. Установите соответствие термодинамического процесса к его работе.

Термодинамические процессы	Работа в термодинамическом процессе
1. Изохорный процесс V = const	a) $l = 2.3RTlg*V_2/V_1$
2. Изобарный процесс P = const	6) l = 0
3. Изотермический процесс T = const	B) $l = R*(T_2 - T_1)$
4. Адиабатный процесс $PV^k = const$	Γ) $l = R/n - 1*(T_1 - T_2)$
5. Политропный процесс $PV^n = const$	д) $l = R/k - 1*(T_1 - T_2)$
	e) $l = q$

Ключи

1	2	3	4	5
б	В	a	Д	Γ

Второй этап (продвинутый уровень) — показывает сформированность показателя компетенции «уметь»: производить тепловые расчеты, эффективно использовать энергосберегающие технологии в области сельского хозяйства

Задания открытого типа (вопросы для опроса):

- 1. Термодинамическая система
- 2. Нормальные физические условия (НФУ) имеют следующие значения
- 3. Сформулируйте второй закон термодинамики
- 4. Реальный газ это
- 5. Теория теплопередачи представляет собой

Ключи

1.	Это совокупность материальных тел, находящихся в механическом и тепловом
	взаимодействии друг с другом и окружающими телами.
2.	T = 273 K или $t = 0$ °C;

	$P = 101325\ \Pi a$ или $P = 0,1\ M\Pi a;$
	$v = 22,4 \text{ м}^3/\text{кмоль};$
3.	Нельзя построить машину, которая отнимала бы тепло от одного источника и превращала бы его в работу без того, чтобы тело, принимающее участие в рабочих процессах не претерпевало бы каких-либо изменений. Вечный двигатель не возможен.
4.	Газ у которого действует сила между молекулами и этими силами и самим объемом молекул пренебречь нельзя.
5.	Науку, излагающую законы распространения и передачи тепла между телами. Различают три вида теплообмена: 1. Теплопроводность (кондукция). 2. Конвекция. 3. Излучение.

Третий этап (высокий уровень) — показывает сформированность показателя компетенции «владеть»: инженерными методами расчета тепловых процессов. Для решения поставленных задач, понадобится калькулятор.

Практические задания:

- 1. Определить объем смеси идеальных газов при нормальных физических условиях (НФУ) $V_{\rm H}$. Известно, что объем при заданных условиях $V=0.8~{\rm m}^3$, давление $P=0.2~{\rm M\Pi a}$, температура $t=17~{\rm ^{0}C}$.
- 2. Определить влагосодержание d во время нагрева его перед процессом сушки. При этом известна масса паров воды $M_{\text{п.в.}} = 2.5 \text{ г}$, масса сухого воздуха $M_{\text{с.в.}} = 3 \text{ кг}$.
- 3. Определить термический коэффициент полезного действия (КПД) η_t , обратного цикла Карно для холодильной установки, если известнв начальная абсолютная температура T_1 = 450 К и конечная T_2 = 200 К.
- 4. Стены сушильной камеры выполнены из двух слоев материала толщиной первой $\delta_1=120\,$ мм. Температура на внешней поверхности первого слоя материала $t_{c1}=100^{\circ}\text{C}$, на внешней поверхности второго слоя $t_{c3}=50^{\circ}\text{C}$, при этом коэффициент теплопроводности первого слоя $\lambda_1=0.85\,$ Вт/м*К, второго слоя $\lambda_2=0.04\,$ Вт/м*К. Определить толщину второго слоя материала δ_2 .
- 5. Определить количество теплоты, переданное нагретой трубой в окружающую среду. При этом известна температура нагретой трубы снаружи $t_c=101^{\circ}\mathrm{C}$, а также температура воздуха внутри помещения $t_{\scriptscriptstyle B}=17^{\circ}\mathrm{C}$.

Ключи

1.	Объем смеси идеальных газов при НФУ вычисляется по формуле:
	$V_H = 2.73*10^{-3}*(P*V/T), M^3$
	подставляя исходные данные, получим:
	$V_H = 2.73*10^{-3}*(0.2*10^6*0.8/290) = 1.5 \text{ m}^3$
	Сокращенный вариант ответа:
	объем смеси идеальных газов при НФУ равен 1,5 м ³
2.	При нагреве или охлаждении воздуха влагосодержание не меняется. Для
	определения влагосодержания запишем формулу:
	$ m d = M_{\pi.B.}/M_{c.B.}, m r/\kappa m r$
	подставляя исходные данные, получим:
	d = 2,5/3 = 0,8 r/kg
	Сокращенный вариант ответа:

	влагосодержание равно 0,8 г/кг			
3.	Термический КПД обратного цикла Карно зависит от абсолютных температур			
	источника тепла и холодильника, чем больше $T1 > T2$, тем выше η t:			
	$\eta_t = T_1 - T_2 / T_1, \%$			
	подставляя исходные данные, получим:			
	$\eta_t = 450 - 200/450 = 0.55\%$			
	Сокращенный вариант ответа:			
	термический КПД обратного цикла Карно равен 0,55 %			
4.	Толщину второго слоя материала находим по формуле:			
	$\delta_2 = (t_{c3}/t_{c1} - \delta_1/\lambda_1)^* \lambda_2, M$			
	подставляя исходные данные, получим:			
	$\delta_2 = (50/100 - 0.12/0.85) * 0.04 = 0.0076 \text{ M}$			
	Сокращенный вариант ответа:			
	толщина второго слоя материала равна 0,076 м			
5.	Количество теплоты, переданное нагретой трубой в окружающую среду считается			
	$Q_{луч}$. Лучевая теплота имеет следующее выражение:			
	$Q_{\pi yq} = E^*C_0^*F^*[(t_c/100)^4 - (t_B/100)^4], B_T$			
	где: E – степень черноты поверхности трубы, E = 0,86;			
	C_0 – коэффициент излучения черного тела, $C_0 = 5,67 \text{ Bt/m}^2 \text{*K}^4$			
	F — радиационная поверхность, $F = 0.077$			
	подставляя исходные данные, получим:			
	$Q_{\pi yq} = 0.86*5.67*0.077*[(106.3/100)^4 - (11/100)^4] = 0.479 \text{ BT}$			
	Сокращенный вариант ответа:			
	количество теплоты, переданное нагретой трубой в окружающую среду равна			
	0,479 BT			

Оценочные средства для проведения промежуточной аттестации

Промежуточная аттестация проводится в форме устного экзамена.

Вопросы для экзамена

- 1. Что изучает техническая термодинамика?
- 2. Термодинамическая система это
- 3. Дать определение давлению
- 4. Что такое удельный объём
- 5. Как проверить правильность расчета объемных долей смеси?
- 6. Закон Дальтона для смеси идеальных газов:
- 7. Что именно остается неизменным в изобарном процессе?
- 8. Что такое НФУ?
- 9. Почему теплоемкость при постоянном давлении всегда больше теплоемкости при постоянном объеме?
- 10. По какой формуле определяется абсолютное давление?
- 11. Какой вид имеет первый закон термодинамики для изобарного процесса?
- 12. Под плотностью понимают:
- 13. Какой физический смысл удельной газовой постоянной?
- 14. В чем уравнение PV = RT выражает зависимость параметров?
- 15. По какой формуле определяется газовая постоянная?
- 16. Массовая теплоёмкость при постоянном объёме (С_v):
- 17. Универсальная газовая постоянная для всех газов равна:

- 18. В кДж/кг ·К измеряется:
- 19. При каком значении п (показателя политропы) политропный процесс преобразуется в изобарный?
- 20. Изменение внутренней энергии в изохорном процессе определяется по формуле:
- 21. Уравнение $P_2/P_1 = T_2/T_1$ выражается зависимость параметров в:
- 22. Массовая теплоемкость вычисляется по формуле:
- 23. Идеальный газ это:
- 24. Реальный газ это:
- 25. В каких единицах измеряется энтальпия (i)?
- 26. Дать определение истинной теплоемкости.
- 27. Плотность и удельный объём связаны зависимостью:
- 28. Как определить среднюю теплоемкость в интервале от t_1 до t_2 , пользуясь таблицами теплоемкостей от 0 до 2000° C?
- 29. Что такое энтальпия і?
- 30. Что такое энтропия S?
- 31. і энтальпия имеет выражение:
- 32. Чтотизмеряют психрометром Ассмана?
- 33. Чему равен объем 1 кило моля идеального газа при НФУ?
- 34. По формуле $\ell = R \cdot (T_2 T_1)$ определяется:
- 35. Влагосодержание это отношение:
- 36. Влажный воздух это:
- 37. Какой пар называют насыщенный, какой не насыщенный?
- 38. Уравнение Клайперона имеет вид:
- 39. Дайте определение удельной теплоемкости.
- 40. Количество тепла, подведенного к телу при изменении температуры на величину $\Delta t = t_2 t_1$ определяется для:
- 41. Теплопроводностью это:
- 42. Излучение это:
- 43. Конвекция это:
- 44. Температурный градиент, взятый с обратным знаком, называется?
- 45. Плотность теплового потока выражается?
- 46. Теплообмен между жидкостью и стенкой называется?
- 47. Свободное движение это:
- 48. Ламинарное движение в процессе теплопередачи происходит?
- 49. Турбулентное движение в процессе теплопередачи характерно?
- 50. При ламинарном движении перенос тепла по нормали к стенке осуществляется?
- 51. Критическая скорость, определяющая переход из ламинарного движения в турбулентное для любой жидкости имеет вид:
- 52. На интенсивность теплопередачи оказывает влияние?
- 53. Выражение закона Ньютона-Рихмана имеет вид:
- 54. Тело, которое характеризуется наибольшей энергией излучения для всех частот по сравнению с собственным излучением других тел, называется?
- 55. Плотность потока излучения измеряется:
- 56. Закон Стефана-Больцмана определяется:
- 57. Интегральным излучением называется?
- 58. ε коэффициент, характеризующий степень:
- 59. Термическое сопротивление теплопроводности имеет вид:
- 60. Термическое сопротивление теплопередачи имеет вид:

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ

Текущий контроль

Тестирование для проведения текущего контроля проводится с помощью Системы дистанционного обучения или компьютерной программы КТС-2,0. На тестирование отводится 10 минут. Каждый вариант тестовых заданий включает 10 вопросов. Количество возможных вариантов ответов — 4 или 5. Студенту необходимо выбрать один правильный ответ. За каждый правильный ответ на вопрос присваивается 10 баллов. Шкала перевода: 9-10 правильных ответов — оценка «отлично» (5), 7-8 правильных ответов — оценка «хорошо» (4), 6 правильных ответов — оценка «удовлетворительно» (3), 1-5 правильных ответов — оценка «не удовлетворительно» (2).

Опрос как средство текущего контроля проводится в форме устных ответов на вопросы. Студент отвечает на поставленный вопрос сразу, время на подготовку к ответу не предоставляется.

Лабораторные задания как средство текущего контроля проводятся в письменной форме. Студенту выдается задание и предоставляется 10 минут для подготовки к ответу.

Промежуточная аттестация

Экзамен проводится в устной форме. Из экзаменационных вопросов составляется 20 экзаменационных билетов. Каждый билет состоит из трех вопросов. Комплект экзаменационных билетов представлен в учебно-методическом комплексе дисциплины.

На подготовку к ответу студенту предоставляется 20 минут.